Владимир Сливяк - От Хиросимы до Фукусимы

Здесь есть возможность читать онлайн «Владимир Сливяк - От Хиросимы до Фукусимы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Array Литагент «Эксмо», Жанр: Публицистика, Прочая документальная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

От Хиросимы до Фукусимы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «От Хиросимы до Фукусимы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В марте 2011 года крупнейшее цунами вывело из строя системы охлаждения на АЭС «Фукусима-Дайчи», что привело к четырем большим взрывам. Лишь благодаря счастливому стечению обстоятельств катастрофа привела к гибели всего двух сотрудников станции и переселению примерно 80 000 человек. В этой книге оцениваются причины и последствия этой ядерной аварии и как она могла произойти в наиболее технологически продвинутой стране мира. А также – как выглядит на этом фоне Россия. Действительно ли у нас все настолько безопасно, как об этом говорят власти и атомная промышленность? Возможно ли повторение Чернобыля и Фукусимы в России?

От Хиросимы до Фукусимы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «От Хиросимы до Фукусимы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Реакторы этого типа, функционирующие в Центральной Европе, в большинстве своем выведены или вскоре будут выведены из эксплуатации, хотя в России срок вывода откладывается. Отсутствие дополнительной системы предупреждения аварий атомных реакторов и системы аварийного охлаждения активной зоны реактора вызывают особое беспокойство [36].

Еще один пример реактора первого поколения, до сих пор находящегося в эксплуатации в Великобритании, являет Magnox– графитовый реактор с воздушным охлаждением. В некоторых реакторах этого типа металлические элементы состарились, подверглись коррозии и охрупчиванию. Авария на Magnox может привести к полной потере теплоносителя в первом контуре реактора и выходу большого количества радиации в окружающую среду. По этой причине ряд таких реакторов был остановлен еще до истечения 40-летнего срока эксплуатации, а в 2010 году этот срок истек у всех Magnox, и скоро они будут демонтированы.

Данные реакторы не оборудованы дополнительной системой, позволяющей защитить активную зону реактора от внешнего воздействия и предотвратить выход радиации. Существует большая вероятность крупных утечек радиации из реакторов даже после того, как их начали выводить из эксплуатации.

Поколение 2

Наиболее распространенными являются реакторы с водой под давлением (PWR),которых в мире насчитывается свыше двухсот. Первоначально конструкция реакторов PWRбыла разработана для военных подводных лодок. Вода в первом контуре имеет более высокую температуру и уровень давления, чем в реакторах других типов. Эти факторы могут ускорять коррозию различных деталей; в частности, на таких реакторах часто заменяют парогенераторы. Данный тип реакторов работает на низкообогащенном уране.

Также в настоящее время накоплен большой объем информации об образовании трещин в стальной крышке корпуса реактора. Проведенные в разных странах исследования выявили схожие проблемы в реакторах во Франции, Швеции, Швейцарии и США. Наиболее серьезный случай был выявлен на АЭС «Дэвис Бесс» в штате Огайо, США. В этом случае процесс образования трещин беспрепятственно продолжался на протяжении десяти лет. Несмотря на регулярные проверки, его не могли обнаружить в течение длительного времени, а когда обнаружили, трещина уходила в глубину 160-миллиметрового слоя стали на 155 мм. В случае, если бы коррозия разъела сталь полностью, последствия могли быть самыми плачевными. Из всех типов реакторов PWR имеет наибольшее число лет эксплуатации в рабочем режиме.

Схожей конструкцией с PWR обладает российский реактор ВВЭР. В настоящее время работает свыше 50 таких реакторов, в том числе в Восточной Европе, России. Старейший, ВВЭР 440–230, был упомянут выше при описании поколения I.

Второе поколение ВВЭР (тип 440–213) было представлено как обладающее более эффективной аварийной системой охлаждения активной зоны реактора. Однако и у них есть существенные недостатки, в том числе не решена проблема защиты активной зоны от внешних воздействий.

Третья модификация ВВЭР (тип 1000-320) была существенно изменена, у нее более высокая мощность (до 1000 Мвт). Несмотря на это, ВВЭР-1000 не стали настолько же безопасными, как современные PWR. В Германии, задолго до аварии на АЭС «Фукусима-Дайчи», ВВЭР всех поколений были закрыты, а строительство новых остановлено. Причинами этого послужили как экономические факторы, так и проблемы безопасности.

Наиболее печально известным реактором в мире является РБМК,относящийся к поколению 2. Это графитовый ядерный реактор с кипящей водой. Также РБМК называют канальным реактором. Данный тип реактора эксплуатировался на Чернобыльской АЭС (Украина), которая стала местом наиболее страшной ядерной катастрофы в истории человечества. Данный реактор имеет большое количество конструктивных недостатков, и не все из них специалисты смогли устранить после Чернобыльской катастрофы.

По сравнению с другими типами реакторов в активной зоне РБМК содержится большее количество циркония (приблизительно на 50 % больше, чем в обычных реакторах с кипящей водой в качестве теплоносителя) и графита (около 1700 т). Горение графита может серьезно обострить аварийную ситуацию, так как при высоких температурах графит вступает в реакцию с водой, вырабатывая взрывоопасный водород.

К конструктивным недостаткам РБМК можно отнести:

– положительный коэффициент реактивности и эффект обезвоживания активной зоны;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «От Хиросимы до Фукусимы»

Представляем Вашему вниманию похожие книги на «От Хиросимы до Фукусимы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «От Хиросимы до Фукусимы»

Обсуждение, отзывы о книге «От Хиросимы до Фукусимы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x