Владимир Сливяк - От Хиросимы до Фукусимы

Здесь есть возможность читать онлайн «Владимир Сливяк - От Хиросимы до Фукусимы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Array Литагент «Эксмо», Жанр: Публицистика, Прочая документальная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

От Хиросимы до Фукусимы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «От Хиросимы до Фукусимы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В марте 2011 года крупнейшее цунами вывело из строя системы охлаждения на АЭС «Фукусима-Дайчи», что привело к четырем большим взрывам. Лишь благодаря счастливому стечению обстоятельств катастрофа привела к гибели всего двух сотрудников станции и переселению примерно 80 000 человек. В этой книге оцениваются причины и последствия этой ядерной аварии и как она могла произойти в наиболее технологически продвинутой стране мира. А также – как выглядит на этом фоне Россия. Действительно ли у нас все настолько безопасно, как об этом говорят власти и атомная промышленность? Возможно ли повторение Чернобыля и Фукусимы в России?

От Хиросимы до Фукусимы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «От Хиросимы до Фукусимы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ВВЭР-440

Главные недостатки этого типа реакторов состоят в том, что отсутствует железобетонная защитная оболочка (в современных реакторах в обязательном порядке должна быть), а также технические средства для контроля основного металла и сварных соединений оборудования и трубопроводов. По мнению экспертов, существенной проблемой обеспечения безопасности является нейтронное облучение корпуса реактора, которое приводит к тому, что сталь становится хрупкой. Реакторы ВВЭР-440/230 сделаны из сваренных цилиндров. Сварные швы в особенности подвержены разрушению при нейтронном облучении. В качестве охлаждающего вещества применяется вода. Под воздействием ионизирующего излучения вода разлагается на кислород и водород (радиолиз). При определенном соотношении эта смесь образует гремучий газ, и поэтому на водоохлаждаемой АЭС всегда есть опасность химического взрыва. По самым разным причинам может возникнуть интенсивное парообразование в первом контуре и произойти паровой взрыв, энергии при этом будет достаточно, чтобы сбросить крышку реактора или разрушить первый контур.

ВВЭР440 В конструкционных материалах стенок корпуса реактора и трубопроводов - фото 3

ВВЭР-440

В конструкционных материалах стенок корпуса реактора и трубопроводов неизбежно возникают трещины, развитие которых может привести к аварии. «Водоохлаждаемые реакторы, несмотря на весь опыт, полученный при работе на них, в принципе не могут быть высокобезопасными… Нельзя создать безопасную атомную энергетику на базе водоохлаждаемых реакторов», – это еще в 1995 году написал один из пионеров советской атомной энергетики академик В.И. Субботин в своих «Размышлениях об атомной энергетике».

Из 32 российских реакторов 16 блоков принадлежат типу ВВЭР (шесть типа ВВЭР-440 и еще десять типа ВВЭР-1000). Доля электроэнергии всех АЭС в стране – 16 %. Все водоохлаждаемые реакторы обеспечивают около половины энергии, производимой на российских АЭС.

РБМК

Первый реактор типа РБМК-1000 был введен в строй в 1973 году на Ленинградской АЭС. Строительство АЭС с реакторами РБМК было предусмотрено долгосрочной программой по увеличению производства электроэнергии, принятой правительством Советского Союза. За десять лет после пуска первого энергоблока Ленинградской АЭС соорудили еще 12 энергоблоков с реакторами РБМК-1000, в том числе на Курской, Чернобыльской и Смоленской АЭС. К апрелю 1986 года электроэнергию вырабатывали уже 14 энергоблоков с РБМК (кроме реакторов упомянутых АЭС были пущены блоки РБМК-1500 на Игналинской АЭС в Литве). 26 апреля 1986 года на Чернобыльской АЭС произошла самая крупная ядерная авария в истории человечества, что вызвало отказ многих стран от дальнейшего развития атомной энергетики.

У реакторов типа РБМК отсутствует защитная оболочка, а также имеется ряд других конструктивных недостатков. Например, в случае допустимого снижения реактивности действие аварийной защиты реактора происходит недостаточно быстро. Кроме этого, при нарушении нормальной эксплуатации на РБМК недостаточно автоматических технических средств, чтобы привести реактор в безопасное состояние. В реакторах типа РБМК-1000 конструктивные дефекты обнаруживаются в металле контура многократной принудительной циркуляции (КМПЦ). Как говорит бывший начальник Центральной инспекции Госатомнадзора РФ Владимир Кузнецов, при каждом плановом ремонте находится до 300 дефектов непосредственно на водоопускных, водоуравнительных и напорных трубопроводах реактора. Подобные дефекты зарегистрированы практически на всех станциях, использующих реакторы данного типа, в том числе на Курской, Ленинградской, Смоленской АЭС. Несмотря на то, что за последние 15 лет многие работающие реакторы типа РБМК были модернизированы, эксперты по-прежнему сомневаются в том, что авария с разрушением активной зоны на таких блоках невозможна. Дело в том, что далеко не все дефекты, связанные с износом реакторов, могут быть обнаружены методом неразрушающего контроля. Вместе с этим известно, что после преодоления 20-летнего рубежа на реакторах растет количество неполадок, связанных с износом оборудования. Износ может проявляться по-разному в зависимости от конкретного компонента. В принципе все компоненты АЭС подвержены изменению свойств материалов в результате износа, что влечет за собой снижение функциональных возможностей. В ходе технического обслуживания и управления износом операторы АЭС ликвидируют ожидаемые повреждения путем ремонта и замены компонентов. Тем не менее опыт показывает, что время от времени возникают непредвиденные повреждения в результате износа [5]. Для ядерных реакторов канального типа, CANDU и РБМК, особо тяжелой проблемой является охрупчивание. У реакторов с графитовым замедлителем существует специфическая проблема – графитовый износ. В настоящее время графитовое трещинообразование в усовершенствованном газоохлаждаемом ядерном реакторе является предметом особого наблюдения, так как это явление может представлять опасность для целостности активной зоны.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «От Хиросимы до Фукусимы»

Представляем Вашему вниманию похожие книги на «От Хиросимы до Фукусимы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «От Хиросимы до Фукусимы»

Обсуждение, отзывы о книге «От Хиросимы до Фукусимы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x