Paul Graham - Hackers and Painters - Big Ideas from the Computer Age

Здесь есть возможность читать онлайн «Paul Graham - Hackers and Painters - Big Ideas from the Computer Age» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2004, ISBN: 2004, Издательство: O'Reilly Media, Жанр: Публицистика, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Hackers and Painters: Big Ideas from the Computer Age: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Hackers and Painters: Big Ideas from the Computer Age»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

"The computer world is like an intellectual Wild West, in which you can shoot anyone you wish with your ideas, if you're willing to risk the consequences. " —from
, by Paul Graham We are living in the computer age, in a world increasingly designed and engineered by computer programmers and software designers, by people who call themselves hackers. Who are these people, what motivates them, and why should you care? Consider these facts: Everything around us is turning into computers. Your typewriter is gone, replaced by a computer. Your phone has turned into a computer. So has your camera. Soon your TV will. Your car was not only designed on computers, but has more processing power in it than a room-sized mainframe did in 1970. Letters, encyclopedias, newspapers, and even your local store are being replaced by the Internet.
, by Paul Graham, explains this world and the motivations of the people who occupy it. In clear, thoughtful prose that draws on illuminating historical examples, Graham takes readers on an unflinching exploration into what he calls "an intellectual Wild West." The ideas discussed in this book will have a powerful and lasting impact on how we think, how we work, how we develop technology, and how we live. Topics include the importance of beauty in software design, how to make wealth, heresy and free speech, the programming language renaissance, the open-source movement, digital design, Internet startups, and more. And here's a taste of what you'll find in
: "In most fields the great work is done early on. The paintings made between 1430 and 1500 are still unsurpassed. Shakespeare appeared just as professional theater was being born, and pushed the medium so far that every playwright since has had to live in his shadow. Albrecht Durer did the same thing with engraving, and Jane Austen with the novel. Over and over we see the same pattern. A new medium appears, and people are so excited about it that they explore most of its possibilities in the first couple generations. Hacking seems to be in this phase now. Painting was not, in Leonardo's time, as cool as his work helped make it. How cool hacking turns out to be will depend on what we can do with this new medium." Andy Hertzfeld, co-creator of the Macintosh computer, says about
: "Paul Graham is a hacker, painter and a terrific writer. His lucid, humorous prose is brimming with contrarian insight and practical wisdom on writing great code at the intersection of art, science and commerce." Paul Graham, designer of the new Arc language, was the creator of Yahoo Store, the first web-based application. In addition to his PhD in Computer Science from Harvard, Graham also studied painting at the Rhode Island School of Design and the Accademia di Belle Arti in Florence.

Hackers and Painters: Big Ideas from the Computer Age — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Hackers and Painters: Big Ideas from the Computer Age», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Suddenly, in a matter of weeks, McCarthy found his theoretical exercise transformed into an actual programming language—and a more powerful one than he had intended.

So the short explanation of why this 1950s language is not obsolete is that it was not technology but math, and math doesn't get stale. The right thing to compare Lisp to is not 1950s hardware but the Quick sort algorithm, which was discovered in 1960 and is still the fastest general-purpose sort.

There is one other language still surviving from the 1950s, Fortran, and it represents the opposite approach to language design. Lisp was a piece of theory that unexpectedly got turned into a programming language. Fortran was developed intentionally as a programming language, but what we would now consider a very low-level one.

Fortran I, the language that was developed in 1956, was a very different animal from present-day Fortran. Fortran I was pretty much assembly language with math. In some ways it was less powerful than more recent assembly languages; there were no subroutines, for example, only branches. Present-day Fortran is now arguably closer to Lisp than to Fortran I.

Lisp and Fortran were the trunks of two separate evolutionary trees, one rooted in math and one rooted in machine architecture. These two trees have been converging ever since. Lisp started out powerful, and over the next twenty years got fast. So-called mainstream languages started out fast, and over the next forty years gradually got more powerful, until now the most advanced of them are fairly close to Lisp. Close, but they are still missing a few things.

13.2. What Made Lisp Different

When it was first developed, Lisp embodied nine new ideas. Some of these we now take for granted, others are only seen in more advanced languages, and two are still unique to Lisp. The nine ideas are, in order of their adoption by the mainstream,

1. Conditionals. A conditional is an if-then-else construct. We take these for granted now, but Fortran I didn't have them. It had only a conditional go to closely based on the underlying machine instruction.

2. A function type. In Lisp, functions are a data type just like integers or strings. They have a literal representation, can be stored in variables, can be passed as arguments, and so on.

3. Recursion. Lisp was the first high-level language to support recursive functions.

4. Dynamic typing. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning values to variables means copying pointers, not what they point to.

5. Garbage-collection.

6. Programs composed of expressions. Lisp programs are trees of expressions, each of which returns a value. This is in contrast to Fortran and most succeeding languages, which distinguish between expressions and statements.

This distinction was natural in Fortran I because you could not nest statements. So while you needed expressions for math to work, there was no point in making anything else return a value, because there could not be anything waiting for it.

This limitation went away with the arrival of block-structured languages, but by then it was too late. The distinction between expressions and statements was entrenched. It spread from Fortran into Algol and then to both their descendants.

7. A symbol type. Symbols are effectively pointers to strings stored in a hash table. So you can test equality by comparing a pointer, instead of comparing each character.

8. A notation for code using trees of symbols and constants.

9. The whole language there all the time. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime.

Running code at read-time lets users reprogram Lisp's syntax; running code at compile-time is the basis of macros; compiling at runtime is the basis of Lisp's use as an extension language in programs like Emacs; and reading at runtime enables programs to communicate using sexpressions, an idea recently reinvented as XML.

When Lisp first appeared, these ideas were far removed from ordinary programming practice, which was dictated largely by the hardware available in the late 1950s. Over time, the default language, embodied in a succession of popular languages, has gradually evolved toward Lisp. Ideas 1-5 are now widespread. Number 6 is starting to appear in the mainstream. Python has a form of 7, though there doesn't seem to be any syntax for it.

As for number 8, this may be the most interesting of the lot. Ideas 8 and 9 only became part of Lisp by accident, because Steve Russell implemented something McCarthy had never intended to be implemented. And yet these ideas turn out to be responsible for both Lisp's strange appearance and its most distinctive features. Lisp looks strange not so much because it has a strange syntax as because it has no syntax; you express programs directly in the parse trees that get built behind the scenes when other languages are parsed, and these trees are made of lists, which are Lisp data structures.

Expressing the language in its own data structures turns out to be a very powerful feature. Ideas 8 and 9 together mean that you can write programs that write programs. That may sound like a bizarre idea, but it's an everyday thing in Lisp. The most common way to do it is with something called a macro .

The term "macro" does not mean in Lisp what it means in other languages. A Lisp macro can be anything from an abbreviation to a compiler for a new language. If you really want to understand Lisp, or just expand your programming horizons, I would learn more about macros.

Macros (in the Lisp sense) are still, as far as I know, unique to Lisp. This is partly because in order to have macros you probably have to make your language look as strange as Lisp. It may also be because if you do add that final increment of power, you can no longer claim to have invented a new language, but only a new dialect of Lisp.

I mention this mostly as a joke, but it is quite true. If you define a language that has car, cdr, cons, quote, cond, atom, eq, and a notation for functions expressed as lists, then you can build all the rest of Lisp out of it. That is in fact the defining quality of Lisp: it was in order to make this so that McCarthy gave Lisp the shape it has.

13.3. Where Languages Matter

Even if Lisp does represent a kind of limit that mainstream languages are approaching asymptotically, does that mean you should actually use it to write software? How much do you lose by using a less powerful language? Isn't it wiser, sometimes, not to be at the very edge of innovation? And isn't popularity to some extent its own justification? Isn't the pointy-haired boss right, for example, to want to use a language for which he can easily hire programmers?

There are, of course, projects where the choice of programming language doesn't matter much. As a rule, the more demanding the application, the more leverage you get from using a powerful language. But plenty of projects are not demanding at all. Most programming probably consists of writing little glue programs, and for little glue programs you can use any language that you're already familiar with and that has good libraries for whatever you need to do. If you just need to feed data from one Windows app to another, sure, use Visual Basic.

You can write little glue programs in Lisp too (I use it as a desktop calculator), but the biggest win for languages like Lisp is at the other end of the spectrum, where you need to write sophisticated programs to solve hard problems in the face of fierce competition. A good example is the airline fare search program that ITA Software licenses to Orbitz. These guys entered a market already dominated by two big, entrenched competitors, Travelocity and Expedia, and seem to have just humiliated them technologically.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Hackers and Painters: Big Ideas from the Computer Age»

Представляем Вашему вниманию похожие книги на «Hackers and Painters: Big Ideas from the Computer Age» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Hackers and Painters: Big Ideas from the Computer Age»

Обсуждение, отзывы о книге «Hackers and Painters: Big Ideas from the Computer Age» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x