Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

These practical exploits may have been fun, but Einstein’s glorious isolation from the priesthood of academic physicists was starting to have more drawbacks than advantages. In a paper he wrote in the spring of 1907, he began by exuding a joyful self-assurance about having neither the library nor the inclination to know what other theorists had written on the topic. “Other authors might have already clarified part of what I am going to say,” he wrote. “I felt I could dispense with doing a literature search (which would have been very troublesome for me), especially since there is good reason to hope that others will fill this gap.” However, when he was commissioned to write a major year-book piece on relativity later that year, there was slightly less cockiness in his warning to the editor that he might not be aware of all the literature. “Unfortunately I am not in a position to acquaint myself about everything that has been published on this subject,” he wrote, “because the library is closed in my free time.” 14

That year he applied for a position at the University of Bern as a privatdozent, a starter rung on the academic ladder, which involved giving lectures and collecting a small fee from anyone who felt like showing up. To become a professor at most European universities, it helped to serve such an apprenticeship. With his application Einstein enclosed seventeen papers he had published, including the ones on relativity and light quanta. He was also expected to include an unpublished paper known as a habilitation thesis, but he decided not to bother writing one, as this requirement was sometimes waived for those who had “other outstanding achievements.”

Only one professor on the faculty committee supported hiring him without requiring him to write a new thesis, “in view of the important scientific achievements of Herr Einstein.” The others disagreed, and the requirement was not waived. Not surprisingly, Einstein considered the matter “amusing.” He did not write the special habilitation or get the post. 15

The Equivalence of Gravity and Acceleration

Einstein’s road to the general theory of relativity began in November 1907, when he was struggling against a deadline to finish an article for a science yearbook explaining his special theory of relativity. Two limitations of that theory still bothered him: it applied only to uniform constant-velocity motion (things felt and behaved differently if your speed or direction was changing), and it did not incorporate Newton’s theory of gravity.

“I was sitting in a chair in the patent office at Bern when all of a sudden a thought occurred to me,” he recalled. “If a person falls freely, he will not feel his own weight.”That realization, which “startled” him, launched him on an arduous eight-year effort to generalize his special theory of relativity and “impelled me toward a theory of gravitation.” 16Later, he would grandly call it “the happiest* thought in my life.” 17

The tale of the falling man has become an iconic one, and in some accounts it actually involves a painter who fell from the roof of an apartment building near the patent office. 18In fact, probably like other great tales of gravitational discovery—Galileo dropping objects from the Tower of Pisa and the apple falling on Newton’s head 19—it was embellished in popular lore and was more of a thought experiment than a real occurrence. Despite Einstein’s propensity to focus on science rather than the merely personal, even he was not likely to watch a real human plunging off a roof and think of gravitational theory, much less call it the happiest thought in his life.

Einstein refined his thought experiment so that the falling man was in an enclosed chamber, such as an elevator in free fall above the earth. In this falling chamber (at least until it crashed), the man would feel weightless. Any objects he emptied from his pocket and let loose would float alongside him.

Looking at it another way, Einstein imagined a man in an enclosed chamber floating in deep space “far removed from stars and other appreciable masses.” He would experience the same perceptions of weightlessness. “Gravitation naturally does not exist for this observer. He must fasten himself with strings to the floor, otherwise the slightest impact against the floor will cause him to rise slowly towards the ceiling.”

Then Einstein imagined that a rope was hooked onto the roof of the chamber and pulled up with a constant force. “The chamber together with the observer then begin to move ‘upwards’ with a uniformly accelerated motion.”The man inside will feel himself pressed to the floor. “He is then standing in the chest in exactly the same way as anyone stands in a room of a house on our earth.” If he pulls something from his pocket and lets go, it will fall to the floor “with an accelerated relative motion” that is the same no matter the weight of the object—just as Galileo discovered to be the case for gravity. “The man in the chamber will thus come to the conclusion that he and the chest are in a gravitational field. Of course he will be puzzled for a moment as to why the chest does not fall in this gravitational field. Just then, however, he discovers the hook in the middle of the lid of the chest and the rope which is attached to it, and he consequently comes to the conclusion that the chamber is suspended at rest in the gravitational field.”

“Ought we to smile at the man and say that he errs in his conclusion?” Einstein asked. Just as with special relativity, there was no right or wrong perception. “We must rather admit that his mode of grasping the situation violates neither reason nor known mechanical laws.” 20

A related way that Einstein addressed this same issue was typical of his ingenuity: he examined a phenomenon that was so very well-known that scientists rarely puzzled about it. Every object has a “gravitational mass,” which determines its weight on the earth’s surface or, more generally, the tug between it and any other object. It also has an “inertial mass,” which determines how much force must be applied to it in order to make it accelerate. As Newton noted, the inertial mass of an object is always the same as its gravitational mass, even though they are defined differently. This was obviously more than a mere coincidence, but no one had fully explained why.

Uncomfortable with two explanations for what seemed to be one phenomenon, Einstein probed the equivalence of inertial mass and gravitational mass using his thought experiment. If we imagine that the enclosed elevator is being accelerated upward in a region of outer space where there is no gravity, then the downward force felt by the man inside (or the force that tugs downward on an object hanging from the ceiling by a string) is due to inertial mass. If we imagine that the enclosed elevator is at rest in a gravitational field, then the downward force felt by the man inside (or the force that tugs downward on an object hanging from the ceiling by a string) is due to gravitational mass. But inertial mass always equals gravitational mass. “From this correspondence,” said Einstein, “it follows that it is impossible to discover by experiment whether a given system of coordinates is accelerated, or whether . . . the observed effects are due to a gravitational field.” 21

Einstein called this “the equivalence principle.” 22The local effects of gravity and of acceleration are equivalent. This became a foundation for his attempt to generalize his theory of relativity so that it was not restricted just to systems that moved with a uniform velocity. The basic insight that he would develop over the next eight years was that “the effects we ascribe to gravity and the effects we ascribe to acceleration are both produced by one and the same structure.” 23

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x