В формуле (5) a, C V, C P — скорость звука и удельные теплоемкости при постоянных давлении и объеме, а все входящие а правую часть (4) величины (кроме ∆ P ) относятся к состоянию перед волной. С. П. Дьяковым было замечено, что поскольку в силу (4) ширина переходного слоя ударной волны обратно пропорциональна ее амплитуде, то для достаточно слабых ударных волн в редактирующей среде состояние вещества в переходном слое можно считать изменяющимся медленно по отношению к установлению равновесия, что позволяет трактовать процесс релаксации в духе метода Мандельштама-Леонтовича с использованием выражения (2) в (5), пренебрегая при этом теплопроводностью и обычной вязкостью. В результате была получена формула

возможность пользования которой требовала установления еще условия медленного изменения состояния вещества в переходном слое. Сформулированное в общем виде δ >> a 0 τ , в силу (2) и (6) это условие было конкретизировано в форме общеизвестного ныне критерия

Описанный выше метод нашел приложение для некоторых важных классов релаксирующих систем [7–9] и в настоящее время широко известен как «метод концепции второй вязкости Мандельштама-Леонтовича-Дьякова».
Как уже отмечалось выше, проблема устойчивости фронта ударной волны вновь стала в центре внимания исследователей с начала 1970 г., когда это явление получило подтверждение экспериментом, а работа Сергея Петровича [2] — дальнейшее развитие. Ряд обобщений и идей в этой области принадлежит О. А. Синкевичу, которому мы и предоставим слово.
— В настоящее время становится очевидным, что именно механизм устойчивости обеспечивает отбор различных эволюционирующих состояний в живой и неживой природе. Если останавливаться только на неустойчивостях в распределенных системах, то во многих случаях можно выделить неустойчивости, вызванные внутренними состояниями и процессами в среде, и неустойчивости, обусловленные активными границами.
С. П. Дьяков был одним из первых, кто убедительно продемонстрировал роль активных границ в задаче об устойчивости плоских ударных волн с произвольным видом ударной адиабаты Гюгонио P = P ( V ) H (здесь P — давление, V = 1/ ρ — удельный объем, а ρ — соответственно плотность среды) относительно двумерных гофрировочных возмущений. Для плоской ударной волны, распространяющейся в положительном направлении оси y , когда невозмущенная плоская поверхность фронта совпадает с плоскостью x0y , Сергей Петрович исследовал в линейном приближении устойчивость первоначально малых возмущений ξ (вязкостью и теплопроводностью пренебрегалось) вида ξ ~ exp(ikx — iωt). Поскольку ударная волна движется со сверхзвуковой скоростью относительно газа перед фронтом волны, то, естественно, возмущения туда не проникают. Для линеаризованных уравнений газодинамики выбирались следующие граничные условия: ограниченность возмущений при z → ∞ и соотношения на фронте ударной волны, вытекающие из обычных законов сохранения потоков массы, импульса и энергии. Полагая произвольной форму ударной адиабаты, выделяя возмущения в энтропийновихревой и звуковой волнах, С. П. Дьяков из решения характеристического уравнения получил условия неустойчивости плоской ударной волны относительно гофрировочных возмущений в виде

здесь j = ρ 1v 1= ρ 2v 2 — поток массы через фронт ударной волны, M 2= V 2/a S2 — число Маха, v 2 — скорость среды за фронтом, a S2 — скорость звука за фронтом ударной волны, (dV/dP) H — производная от ударной адиабаты, индексы 1 и 2 относятся соответственно к состояниям перед фронтом и за фронтом ударной волны.
Кроме условий (8) неустойчивости ударной волны С. П. Дьяков установил, что в области параметров, удовлетворяющих условию

где

существуют решения с незатухающими возмущениями фронта волны (стационарными в некоторой системе координат, скользящей вдоль фронта), к которому со стороны зафронтового течения примыкают звуковые волны, исходящие под определенным углом. Область параметров
Читать дальше