Борис Кушнер - Учитель

Здесь есть возможность читать онлайн «Борис Кушнер - Учитель» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2003, Издательство: Вестник, Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учитель: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учитель»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Воспоминания посвящены выдающемуся математику Маркову Андрею Андреевичу младшему (1903, Санкт-Петербург — 11 октября 1979, Москва).
Мы, ученики Андрея Андреевича, просто обязаны написать о нём, о нашем времени. Пока помним, сколько помним. Пока живём. В меру своих сил я пробую сделать это. Эти строки посвящаются памяти моего Учителя и памяти трёх его учеников и последователей, дорогих друзей и коллег, безвременно ушедших из жизни. Вот их имена: Сергей Юрьевич Маслов (10 июня 1939 г. — 29 июля 1982 г.), Освальд Демут (Oswald Demuth) (9 декабря 1936 г. — 15 сентября 1988 г.), Альберт Григорьевич Драгалин (10 апреля 1941 г. — 18 декабря 1998 г.) О каждом из них я коротко расскажу ниже, каждый из них — отдельный особенный мир

Учитель — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учитель», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теория Множеств Кантора, встретив поначалу серьёзные возражения, постепенно утвердилась в качестве главной методологии математики. Ряд поразительных открытий был сделан на этом пути. Достаточно упомянуть формулировку в 1904 г. немецким математиком Эрнстом Цермело (Zermelo, Ernst 1871–1953) аксиомы, носящей его имя (и называемой также Аксиомой Выбора). Этот принцип чрезвычайно общей природы давно употреблялся в математике, но его не выделяли и не замечали. Между тем, Аксиома Выбора позволила строго доказать совершенно поразительные утверждения. Пожалуй, самым эффектным из них является так называемый парадокс Банаха-Тарского (1920 г.): любой шар можно разбить на конечное число частей, из которых надлежащими перемещениями их в пространстве можно составить два точно таких же шара. Просто чудеса из Библии, но на сей раз в математике! Термин «парадокс» применяется к этой корректно доказанной теореме ввиду невероятности полученного результата. Воистину эти разбиения и «надлежащие» перемещения уже более принадлежат Б-жественной Сущности, чем нашей. Но также сильно чувствуется, что созданы мы по Образу и Подобию, коль скоро способны заметить усилием интеллектуального воображения тени этих «надлежащих» перемещений. Последовавшее изучение природы Аксиомы Выбора и некоторых других принципов теории множеств привело к открытиям, сравнимым по значению с открытием неевклидовой геометрии или теории относительности в физике.

Естественно, что укоренение теории множеств в качестве языка математики вызвало горячие дискуссии ведущих математиков конца 19-го начала 20-го века. Дискуссии эти продолжаются по сей день, что неудивительно, поскольку речь идёт о самом фундаменте математики.

Одной из реакций на открытие противоречий была идея ограничения понятия множества (на что указывал уже сам Кантор), построение аксиоматических систем теории множеств, исключающих известные парадоксы. Большой вклад принадлежит здесь Цермело, разработавшему самую известную аксиоматику теории множеств, и великому немецкому математику Давиду Гильберту (Hilbert, David 1862–1943), выдвинувшему программу обоснования теоретико-множественной математики [49] «Никто не сможет изгнать нас из математического рая, созданного для нас Кантором!» — писал Гильберт (статья «О бесконечном», в книге Д. Гильберт, Основания Геометрии, ОГИЗ, Государственное Издательство Технико-Теоретической Литературы, Москва-Ленинград, 1948, стр. 350, пер. с нем). посредством надёжных, финитных доказательств непротиворечивости, формализующих её аксиоматических систем. Мы не можем здесь углубляться в эту интереснейшую и труднейшую область математики. Заметим лишь, что отсутствие противоречий в этих аксиоматических системах, начиная с формальной арифметики, не доказано и знаменитые результаты Гёделя (Gцdel, Kurt 1906–1978) указывают, что никаких надежд на решающий прогресс в этом направлении нет.

Принципиально другой была реакция математиков, которые не могли согласиться с самими принципами, на которых покоился теоретико-множественный подход. Эти учёные подчёркивали удалённость построений теории множеств от конструктивных, реальных возможностей человека. Таким образом, появились конструктивистские направления в математике, отвергавшие актуальную бесконечность (сомнения в её допустимости восходят к Аристотелю, т. е. к четвёртому веку до нашей эры!), математическую Вселенную Кантора и соответственно универсальный характер закона исключённого третьего. Естественным выводом была необходимость радикальной перестройки практически всего здания математики.

Для человека, наблюдающего возникшую острейшую полемику со стороны, самым поразительным могло оказаться невероятное, трагическое различие в понимании истины учёными огромных дарований, безупречной честности и одушевлённых беспредельной любовью к своей науке. И это в Математике, Царице наук, отличающейся по всеобщему мнению особенной, безукоризненной точностью и строгостью! Тут есть о чём задуматься, здесь есть, безусловно, и драматический и литературный материал, ещё ожидающий своего Шекспира. И возникает крамольная мысль: а так ли уж строже, точнее математика, чем, скажем, химия? Интереснейшую статью на эту и многие другие темы написал известный математик и филолог, профессор Московского Университета Владимир Андреевич Успенский [50] В.А. Успенский, Семь размышлений на темы философии математики, Закономерности развития современной математики, Наука, М., 106–155, 1987. Владимир Андреевич был, в частности, одним из основателей Отделения Структурной и Прикладной Лингвистики (знаменитый ОСИПЛ) на филологическом факультете МГУ. В.А. Успенский также оригинальный философ и вообще широко одарённый человек. Совсем недавно Владимир Андреевич выпустил двухтомник под характерным названием «Труды по Не Математике», ОГИ, М., 2002. Мои воспоминания об Успенском (и о мех-мате МГУ) можно найти в статье «Успенский пишет о Колмогорове», Историко-математические исследования, Вторая Серия, вып. 1(36), № 2, 165–191, Янус, М. 1996. (Английская версия: B.A. Kushner, Memories of Mech-Math in the Sixties, Modern Logic Vol. 4, № 2, 165–195, 1994). , с которым я имею счастье быть близко знакомым в течение многих лет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учитель»

Представляем Вашему вниманию похожие книги на «Учитель» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учитель»

Обсуждение, отзывы о книге «Учитель» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x