Идею потенциальной бесконечности можно связать с оптимистической верой в наше родовое бессмертие: то, что не успею сделать я, сделают дети, ученики, последователи, дети детей, ученики учеников и т. д. С другой стороны, поэты всех времён и народов воспевали бесконечность звёзд в ночном небе. Самого простого акта поэтического воображения достаточно, чтобы воспринимать ряд телеграфных столбов, уходящих за горизонт, или же уходящую за горизонт ленту шоссе, как явления бесконечные, даже если хорошо знаешь, что это шоссе Москва — Симферополь…
Различие между двумя видами бесконечности, очевидно, скорее интеллектуальное, для наших ежедневных дел несущественное. Однако оно имеет огромное практическое значение при построении математики.
Разумеется, возникает вопрос и о природе математических объектов. В каком смысле существует, скажем, множество всех положительных целых чисел, или, гораздо каверзнее, множество всех множеств положительных целых чисел? Кантор занимал здесь радикальную позицию, называемую в сегодняшней философии математики математическим платонизмом [45] По имени античного философа Платона (428 или 427–348 или 347 до н. э.), с идеями которого действительно перекликается мировоззрение Кантора.
. Великий немецкий мыслитель считал, что те же трансфинитные числа не менее реальны, чем звёзды на небе. Предполагается, что имеется некий надсубъективный мир математических объектов, в котором и существуют всевозможные множества. Математические утверждения выражают факты устройства, обстояния вещей в этом мире. Соответственно, любое корректно сформулированное утверждение о математических объектах (скажем, «существует нечётное совершенное число») либо верно, либо нет в том же вечном, от наших соглашений и знаний независимом смысле. Таким образом, приобретают универсальный статус и законы аристотелевской логики, в особенности закон исключённого третьего, формулировкой которого и являлось предыдущее предложение. По известному афоризму, математик не изобретает, но открывает свои теоремы, примерно, как географ-мореплаватель открывает неизвестные острова в океане [46] Если не ошибаюсь, эту мысль высказывал выдающийся немецкий логик, математик и философ Фреге (Gottlog Frege (1848–1925)).
.
Кантор провозглашал нашу способность свободно оперировать с бесконечностью, ничем не ограниченную постигающую и созидающую мощь нашего духа. «Сущность математики — в её свободе», — таков был прекрасный, поэтический лозунг великого математического романтика.
Но у свободы есть, как мы хорошо знаем, цена, и романтика иногда далеко заводит. Надо сказать, что Кантор заплатил страшную цену за прорыв в Бесконечное. Душевное заболевание прогрессировало, всё больше мешало ему работать. Великий мыслитель умер в нервной клинике…
Уже самому Кантору были известны парадоксы теории множеств, попросту говоря, противоречия в ней, возникавшие на её окраинах и связанные именно с неограниченной свободой в образовании самых общих понятий. Положение это, по существу, было нетерпимым — ведь по тем же законам классической, аристотелевской логики, имея противоречие, можно доказать всё, что угодно. Вот пример парадокса, известного Кантору, и показывающего опасность чрезвычайно общих понятий. Кантором была доказана красивая теорема о том, что по всякому множеству можно найти множество большей мощности, содержащее «большее» число элементов [47] Этим свойством обладает множество всех подмножеств любого множества.
. Применение этого результата к множеству всех множеств приводит к немедленному, очевидному противоречию, напоминающему, кстати, парадоксальные ситуации в физике, когда речь идёт о «всей» Вселенной. Наиболее знаменитый из парадоксов был открыт в начале XX века английским философом и математиком Бертраном Расселом (Russel, Bertrand 1872–1970). Интересно, что и в случае парадокса Рассела источником беды являлась именно неограниченная свобода в образовании множеств, чрезвычайная общность этого понятия. Сам же парадокс, в сущности, воспроизводил в рамках теории множеств ситуации, известные с глубокой античности [48] Речь идёт о парадоксах, связанных с автореферентностью, когда некоторое понятие определяется в терминах, включающих его самого, или когда некоторое понятие применяется к самому себе. Здесь можно упомянуть парадоксы «лжеца», известные с глубокой древности. Допустим, я произношу фразу: «То, что я сейчас сказал — ложь». Невозможно оценить это высказывание, ни как истинное, ни как ложное. К этому же типу относится известный в античности парадокс «все критяне лжецы» (представим себе, что это говорит критянин). Построение Рассела близко к известному парадоксу брадобрея: «В Севилье живёт цирюльник, который бреет всех тех севильцев, кто сам себя не бреет (и только их); как быть, если ему надо побриться?». Очевидно, такого рода цирюльник не может жить в Севилье, и эта идея лежит в основе так называемого диагонального метода Кантора и многих конструкций в теории алгорифмов. Однако, в случае теории множеств «Севильей» оказывается вся математическая Вселенная, и мы оказываемся перед лицом драматического противоречия. Ср., например, Френкель, Бар-Хиллел, цит. соч., Стефен К. Клини, Введение в метаматематику, иностранная литература, Москва 1957, пер. с англ., стр. 39–42.
.
Читать дальше