Инесса Раскина - Логика для всех. От пиратов до мудрецов

Здесь есть возможность читать онлайн «Инесса Раскина - Логика для всех. От пиратов до мудрецов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент МЦНМО, Жанр: Прочая детская литература, Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика для всех. От пиратов до мудрецов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика для всех. От пиратов до мудрецов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Логика для всех. От пиратов до мудрецов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика для всех. От пиратов до мудрецов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернемся к нашей задаче. Перенумеруем мудрецов: у первого, второго и третьего белые колпаки, у четвертого и пятого красные и у шестого – синий. Если бы на первом был синий колпак, то через одну минуту все бы оставались на местах, а на второй минуте второй мудрец подумал бы: «Я вижу оба синих колпака. Если на мне красный, то третий мудрец видит все красные и все синие колпаки и должен был сразу понять, что на нем белый (здесь тонкость, разберемся позже). Почему же он не вышел? Потому что на мне белый колпак!»

Если бы на первом был красный колпак, второй мудрец рассуждал бы аналогично: «Я вижу все три красных колпака. Если на мне синий, то третий мудрец видит все красные и все синие колпаки и должен был сразу понять, что на нем белый. Почему же он не вышел? Потому что на мне белый колпак!»

Но на первом не синий и не красный колпак. Поэтому через две минуты второй мудрец останется на месте (аналогичная тонкость, ее тоже отложим на потом). Первый мудрец рассуждает не хуже нас с вами и из того, что второй никуда не ушел через две минуты, поймет к концу третьей минуты, что ему надо выйти в белую дверь. Вместе с ним выйдут находящиеся в таком же положении второй и третий мудрецы.

После этого каждый из трех оставшихся мудрецов подумает: «Если бы на мне был белый колпак, то я был бы точно в том же положении, что и первые трое. Но они уже определили цвет своего колпака, а я еще нет. Почему же? Потому что я не в белом колпаке!» И тут же продолжит: «Два других мудреца, пока не угадавших цвет своих колпаков, тоже только что поняли про себя, что колпаки на них не белые. Мы все теперь можем исключить из рассмотрения четыре белых колпака и ушедших мудрецов. Задача сведена к предыдущей». Как уже показано, после этого мудрецы в красных колпаках потратят еще две минуты на определение цвета своих колпаков, а за третью минуту разберется и мудрец в синем колпаке.

Вот теперь обсудим тонкие места. Мы воспользовались тем, что на второй минуте третий и второй мудрецы еще не могли определить цвет своего колпака. А вдруг могли, просто мы не настолько мудры, чтобы понять, как именно? К счастью, даже если бы и могли, на ответ это бы не повлияло. Ведь это значило бы просто, что все мудрецы в белых колпаках определили их цвет на минуту раньше, чем мы думаем. Ну и прекрасно: определили же! Заметим также, что если мудрецы в красных и синем колпаках тоже могли бы как-то определить цвета своих колпаков раньше, чем описано в нашем решении, это по аналогичной причине не повлияло бы на ответ: «белые» мудрецы в своих размышлениях не используют сидение на месте «красных» и «синего», а «красные» – сидение «синего».

Д53. Если у одного из мудрецов нечетное число, то он сразу скажет: «Я знаю твое число». Поэтому первое утверждение «Я не знаю твоего числа» следует понимать как «Мое число четное».

Если число второго мудреца не кратно четырем, то он из этого сделает вывод, что у первого мудреца число вдвое больше, и определит его. Иначе он тоже скажет: «Я не знаю твоего числа», что будет означать «Мое число кратно четырем».

Если число первого мудреца не кратно 8, то он сможет определить число партнера, умножив на 2 свое число. Иначе он тоже скажет: «Я не знаю твоего числа», что будет означать «Мое число кратно восьми» и т. д.

Поскольку числа, данные мудрецам, не могут делиться на сколь угодно большую степень двойки, рано или поздно этот процесс прекратится.

Д54.Подсказка. Чтобы лучше разобраться в этой довольно сложной задаче, решим для начала аналогичную для трех мудрецов и чисел от 1 до 10. Пусть палач обошел всех по три раза, а в начале четвертого обхода первый мудрец сказал, что наибольшее число у него.

Запишем по порядку утверждения про числа, соответствующие высказываниям мудрецов.

1 мудрец: «У меня не 10».

2 мудрец: «У меня не 10».

3 мудрец: «У меня не 10 и не 9».

1 мудрец: «У меня не 9».

2 мудрец: «У меня не 9 и не 8».

3 мудрец: «У меня не 8».

1 мудрец: «У меня не 8 и не 7».

2 мудрец: «У меня не 7».

3 мудрец: «У меня не 7 и не 6».

1 мудрец: «У меня 6, и это самое большое число».

Решение.До того, как первый мудрец сказал, что его число максимальное, мудрецы успели сделать 1000 высказываний. В первых 9 утверждалось только, что у соответствующего мудреца не 1000, в следующих 9 – что не 999 (при этом в первом из этих следующих дополнительно утверждалось, что и не 1000), в следующих 9 – что не 998 (при этом в первом из этих следующих дополнительно утверждалось, что и не 999). Разделим 1000 на 9, получим в частном 111 и в остатке 1. Это означает, что в 999-м высказывании девятый мудрец утверждал, что у него не 890, в 1000-м десятый мудрец сообщил, что у него не 890 и не 889. До этого остальные уже успели сказать, что у них не 890. Поскольку этого как раз хватило первому мудрецу, чтобы понять, что его число – максимальное, этим числом было 889.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика для всех. От пиратов до мудрецов»

Представляем Вашему вниманию похожие книги на «Логика для всех. От пиратов до мудрецов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Людмила Раскина - Былое и думы собаки Диты
Людмила Раскина
Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика для всех. От пиратов до мудрецов»

Обсуждение, отзывы о книге «Логика для всех. От пиратов до мудрецов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x