4. М. Милг. Что сказал проводник? // Квант. – 1973. – № 8.– С. 38.
Занятие 1. Легко ли быть рыцарем, или Высказывания и их отрицания
Задача 1.Являются ли высказываниями следующие предложения?
1. Семеро одного не ждут.
2. У кошки четыре ноги.
3. 1 января 2001 года был вторник.
4. Любое четное число, не меньшее 4, можно представить в виде суммы двух простых чисел
5*. Это утверждение истинно.
Задача2. Являются ли противоположными высказывания:
1) «Вчера светило солнце» и «Вчера шел дождь»;
2) «Я умею прыгать через лужи» и «Я не умею прыгать через лужи»?
Задача 3.Постройте отрицания к высказываниям, не пользуясь оборотом «Неверно, что…»:
1) Я встретил Вас.
2) Трудно быть богом.
Задача4*. Британские ученые нашли древнюю рукопись, содержащую всего два утверждения:
1) Оба утверждения этой рукописи ложны.
2) Земля имеет форму чемодана.
Какой вывод можно сделать из этой рукописи?
Задача 5.Объясните, почему данные предложения не являются высказываниями. Можете ли вы сконструировать аналогичные по смыслу высказывания? Как вы думаете, истинны ли они?
1. Семь раз отмерь, один раз отрежь.
2. Что нам стоит дом построить: нарисуем – будем жить.
3. Шел дождь.
Задача 6.Придумайте несколько высказываний и несколько предложений, не являющихся высказываниями.
Задача 7.Являются ли противоположными высказывания:
1) «Нельзя пользоваться калькулятором на уроках математики» и «На уроках математики можно пользоваться калькулятором»;
2) «Андрей выше Мити» и «Митя выше Андрея»?
Задача 8.Постройте отрицания к высказываниям, не пользуясь оборотом «Неверно, что…»:
1) Завтра дальняя дорога выпадает королю.
2) У него деньжонок много.
3) А я денежки люблю.
Задача 9. 1)Директор школы категорически возражает против отмены контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?
2) Директор школы категорически возражает против отмены решения о запрете контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?
Задача 10*.Житель острова Крит говорит: «Все критяне лжецы». Истинно или ложно это высказывание? (В этой задаче Крит считается островом рыцарей и лжецов.)
Задача 11.К каждому из высказываний сформулируйте отрицание. Определите, что верно: утверждение или его отрицание.
1) Сумма двух двузначных чисел – двузначное число.
2) Сумма двух четных чисел – четное число.
3) Прямоугольник размером 20 х 15 можно разрезать на прямоугольники размером 3x5.
4) Квадрат размером 2015 х 2015 можно разрезать на прямоугольники размером 20 х 15.
5) В нашей школе найдутся два ученика, имеющие одинаковое число друзей среди учеников нашей школы.
6) * Через отверстие, прорезанное в листке из школьной тетради, человек пролезть не может.
Занятие 2. Урок русского языка, или «Все», «некоторые» и отрицание
Задача 1.1) Серый Волк заинтересовался цветом шапочек. Однажды он встретил Красную Шапочку. Помогите Волку сделать правильный вывод. Придумайте несколько вариантов.
2) Выразите другими словами мысль «Все шапочки красные».
Задача 2.Вася говорит, что слова «для всех» и «для каждого» означают одно и то же. Прав ли Вася?
Задача 3. 1)Означают ли одно и то же высказывания: «Некоторые сантехники любят рэп» и «Некоторые любители рэпа – сантехники»?
2) Означают ли одно и то же высказывания: «Все сантехники любят рэп» и «Все любители рэпа – сантехники»?
Задача 4.Лжец сказал: «Вэтой корзине все грибы съедобны». Значит ли это, что все грибы в этой корзине ядовиты? (Для простоты забудем об условно съедобных грибах и будем каждый гриб считать либо съедобным, либо ядовитым.)
Задача 5.Рассмотрим два утверждения. Сколько из них могут быть верными?
1) В этой корзине все грибы съедобные.
2) В этой корзине есть хотя бы один ядовитый гриб.
Задача6. Лжец сказал: «В этой корзине некоторые грибы ядовитые». Что можно узнать из этого высказывания?
Задача 7.Дано утверждение: «Все малышки хорошо поют». Незнайка сформулировал к нему отрицание: «Все малышки поют отвратительно».
1) Как с помощью закона исключенного третьего убедить Незнайку, что он ошибся?
2) Сформулируйте отрицание правильно.
Задача 8.Постройте отрицания к каждому утверждению, не используя частицу «не». Где сможете, укажите, что верно: утверждение или его отрицание. Где сможете, обоснуйте свое мнение примером или контрпримером.
Читать дальше
Конец ознакомительного отрывка
Купить книгу