Инесса Раскина - Логика для всех. От пиратов до мудрецов

Здесь есть возможность читать онлайн «Инесса Раскина - Логика для всех. От пиратов до мудрецов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент МЦНМО, Жанр: Прочая детская литература, Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика для всех. От пиратов до мудрецов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика для всех. От пиратов до мудрецов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Логика для всех. От пиратов до мудрецов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика для всех. От пиратов до мудрецов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ответ. 889.

Д55. Какие выводы можно сделать из первой фразы А? Во-первых, известное ему произведение P не является произведением двух простых чисел pp 2(иначе разложение 1 · pp 2было бы единственным). Во-вторых, если произведение трех различных натуральных чисел не превосходит 50, то их сумма не превосходит 1 + 2 + 25 = 28. А раз число, которое сообщили математику А, могло бы быть и суммой трех чисел, оно не больше 28. С другой стороны, Р не меньше 21. Действительно, если бы Р было меньше 21, то были бы возможны как минимум два варианта троек чисел с суммой Р: 1 + 2 + (Р – 3) (произведение не больше 1. 2.17 = 34) и 1 Н -3 (Р – 4) (произведение не больше 1-3-16 = 48).

Есть только два числа, соответствующие первой фразе А: 24 и 28.

24 = 1– 2-12 = 1– 3–8 = 1– 4–6 = 2– 3–4 (суммы соответственно 15, 12, 11 и 9);

28 = 1– 2-14 = 1– 4–7 (суммы соответственно 17 и 12).

Ответ Б «Я все равно не знаю их» означает, что известная ему сумма встречается среди этих вариантов более одного раза, т. е. равна 12. Если А сообщили число 24, то он сделает вывод, что задуманы числа 1, 3 и 8. А если ему сообщили число 28, то он поймет, что задуманы числа 1, 4 и 7.

Д56. Зная номера троих других а < b < с, математик понимает, что его номер равен либо а + b + с, либо с – а – b. Раз математик не смог определить свой номер, оба этих выражения должны давать двузначное число (то есть лежать в пределах от 10 до 99) и не совпадать с другими номерами.

Пусть 10 ≤ x < y < z < t ≤ 99—искомые номера, тогда t = x + y + z. Поскольку математик с номером t знает числа x < y < z, число z − x − y двузначно и отлично от x и y. Но тогда z = x + y + (z − x − y) ≥ 10 + 11 + 12 = 33. Заметим еще, что t = z + y + x ≥ z + 11 + 10, то есть t ≥ z + 21. Математик с номером x знает числа y < z < t, значит, y + z + t ≤ 99. Сложив это неравенство с неравенствами 11 ≤ y и z + 21 ≤ t, получим 2z ≤ 67, откуда z ≤ 33. Значит, z = 33. Далее, t = x + y + z > 10 + y + 33 = 43 + y, поэтому 99 > y + z + t > y + 33 + (43 + y) = 76 + 2y. Отсюда 2y ≤ 23, то есть y ≤ 11. Значит, y = 11, x = 10, z = 33 и t = 10 + 11 + 23 = 54. Нетрудно убедиться, что этот набор удовлетворяет условию.

Ответ.10, 11, 33 и 54.

Д57.Пусть x, y, z – числа, написанные на лбу первого, второго и третьего логика соответственно.

Вначале с точки зрения первого логика возможны варианты x = y + z и x = |y − z|. Поэтому первый логик сможет догадаться, какое у него число, только если y = z. Значит, после первого высказывания все знают, что y ≠ z.

Теперь с точки зрения второго логика возможны такие варианты: y = x + z и y = |x − z|, причем y ≠ z. Поэтому второй логик сможет догадаться, какое у него число, только если x = z или x = 2z. Значит, после второго высказывания все знают, что x ≠ z и x ≠ 2z.

Тогда с точки зрения третьего логика возможны такие варианты: z = x + y и z = |x − y|, причем z не равно ни одному из чисел y, x или x/2. Поэтому третий логик сможет догадаться, какое у него число, только если x картинка 61{y, 2y, y/2, 2y/3}. Значит, после третьего высказывания все знают, что x картинка 62{y, 2y, y/2, 2y/3}.

Теперь с точки зрения первого логика возможны варианты x = y + z и x = |y − z|. При этом известно, что x /2 {y, 2y, y/2, 2y/3, z, 2z} и y ≠ z. Поэтому первый логик сможет догадаться, какое у него число, только если y + z или |y − z| равно одному из чисел y, 2y, y/2, 2y/3, z, 2z и y ≠ z. Это возможно, только если y − z равно одному из чисел y/2, 2y/3, z, 2z, −y, −2y, −y/2, −2y/3. В этих случаях x = y + z и равно 3y/2, 4y/3, 3z, 4z, 3y, 4y, 5y/2, 8y/3 соответственно. Поскольку 50 не делится ни на 3, ни на 4, то имеет место случай x = 5y/2. Тогда y = 20, z = 30.

Ответ.У второго 20, у третьего 30.

Авторы задач

Заметная часть вошедших в этот выпуск задач являются по сути техническими упражнениями, придуманными специально для данного занятия. Другие, напротив, так давно вошли в математический фольклор, что их авторство установить затруднительно. Ниже указаны известные нам авторы задач, позаимствованных из классической литературы и математических соревнований.

М. Гарднер: 7.12.

А. В. Грибалко: 7.13.

С. В. Грибок: Д54.

К. А. Кноп: 10.12, Д52, Д55.

А. Н. Печковский: 7.14.

И. В. Раскина: 4.18, 9.11.

A. И. Сгибнев Д43.

Р. М. Смаллиан: 4.13, 4.14, 4.15, 9.5, 9.6.

B. А. Уфнаровский, А. Я. Канель-Белов: Д36.

Б. Р. Френкин: Д35.

А. С. Чеботарев: Д39.

А. В. Шаповалов: 8.10, 9.10, Д44, Д46, Д47, Д56, Д57.

Д. Э. Шноль: 9.3, 9.8, Д43.

Литература

1. Р. М. Смаллиан. Как же называется эта книга? – М.: Издательский дом Мещерякова, 2008.

2. Р. М. Смаллиан. Принцесса или тигр? – М.: Мир, 1985.

3. Л. Кэрролл. Логическая игра. – М.: Наука, 1991.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика для всех. От пиратов до мудрецов»

Представляем Вашему вниманию похожие книги на «Логика для всех. От пиратов до мудрецов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Людмила Раскина - Былое и думы собаки Диты
Людмила Раскина
Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика для всех. От пиратов до мудрецов»

Обсуждение, отзывы о книге «Логика для всех. От пиратов до мудрецов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x