Петр Путенихин - Уравнения движения в расширяющейся Вселенной

Здесь есть возможность читать онлайн «Петр Путенихин - Уравнения движения в расширяющейся Вселенной» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Жанр: Детская образовательная литература, Физика, Математика, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Уравнения движения в расширяющейся Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Уравнения движения в расширяющейся Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Представлены выкладки, из которых выводятся стандартные уравнения движения объектов в расширяющемся пространстве, закон Хаббла. Использованы три независимых подхода: формализм общей теории относительности, физика Ньютона и уравнения, опирающиеся на философию диалектического материализма. Все полученные в разных подходах уравнения являются согласованными и не противоречат друг другу. Приведены примеры использования уравнений движения для построения диаграмм движения. Calculations are presented, from which the standard equations of motion of objects in expanding space, Hubble's law are derived. Three independent approaches are used: the formalism of the general theory of relativity, Newton's physics and equations based on the philosophy of dialectical materialism. All equations obtained in different approaches are consistent and do not contradict each other. Examples of using the equations of motion to construct motion diagrams are given.

Уравнения движения в расширяющейся Вселенной — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Уравнения движения в расширяющейся Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Таким образом, мы можем записать окончательно три уравнения: два уравнения движения для объекта, удаляющегося от наблюдателя в расширяющейся Вселенной: для удалённости и для скорости удаления, и закон Хаббла:

где H H 0 параметр Хаббла равный современному значению r 0 расстояние в - фото 10

где:

H = H 0– параметр Хаббла, равный современному значению;

r 0– расстояние в момент начала расширения до объекта, удаляющегося от наблюдателя, либо расстояние между точкой пространства, где в будущем появится наблюдатель, Земля, и точкой пространства, где в будущем появится удаляющийся объекта – некоторая звезда, сверхновая.

Заметим, что решение уравнения (1) мы получили, исходя из неизменного, постоянного значения параметра H. Из этого же условия можно получить решение и в более общем, но несколько завуалированном виде для переменного значения параметра.

Для этого мы подменим величину Ht в экспоненте другой, интегральной величиной:

Правильность уравнения контролируем по размерности величин слева и справа - фото 11

Правильность уравнения контролируем по размерности величин: слева и справа – они тождественно безразмерные. Величина t 1слева обязательно равна верхнему пределу интегрирования. Смысл интеграла состоит в том, что на каждом интервале времени dt новое расширение испытывает пространство, уже расширившееся на предыдущих этапах.

Математически здесь произведение Ht , как и раньше, является константой для наблюдаемого (!) момента (интервала) времени – t 1. Величина этой безразмерной константы определяется, по существу, интегральным значением реального параметра Хаббла, изменяющегося на интервале времени от начального t 0до конечного t 1. В частности, для всего времени существования Вселенной, то есть, принимая t 0 = 0, t 14 = 14, и современного постоянного значения параметра H 0 = 1/t 14, мы получим:

Подставляем в уравнение 3 и находим что удалённость всех галактик во - фото 12

Подставляем в уравнение (3) и находим, что удалённость всех галактик во Вселенной за время её существования возросла примерно в 3 раза:

Это уравнение относится к любой единичной галактике во Вселенной Например - фото 13

Это уравнение относится к любой единичной галактике во Вселенной. Например, галактика, находившаяся в начале расширения на удалении ~ 14 млрд. световых лет от Земли, сегодня находится на удалении ~ 42 млрд. световых лет.

Есть и ещё один подход к записи уравнения движения (4) (в терминах масштабного фактора):

В этом случае параметр H x не является чётко выраженной функцией времени а - фото 14

В этом случае параметр H ( x ) не является чётко выраженной функцией времени, а значение интеграла после его вычисления просто обозначается, именуется в дальнейшем как функция H ( t ) . Вид функции H ( t ) отличается от вида функции H ( x ) , именовать которую параметром Хаббла вряд ли уместно.

В космологии вместо реальных, физических скорости и удалённости используются соответствующие наблюдательные параметры – яркость удаленной галактики и её красное смещение. Яркость является математически тождественной величиной для удалённости. Определяя яркость стандартной свечи – сверхновой типа Ia, получают точное значение её удалённости. Чем ярче звезда, тем она ближе к нам. Второй параметр – красное смещение в точности соответствует скорости, с какой галактика удаляется от нас: чем больше смещение, тем выше скорость удаления. Иначе говоря, фактически в законе Хаббла присутствуют не скорости и расстояния, а красные смещения и яркости. Главным основанием для утверждений об ускоренном расширении Вселенной как раз и стал тот факт, что яркость дальних сверхновых типа Ia оказалась ниже, чем это должно следовать из закона Хаббла.

2. Закон Хаббла в физике Ньютона

Следует отметить, что закон Хаббла, полученный в формализме общей теории относительности, может быть выведен и средствами физики Ньютона. В интернете и в литературе нередко приводится условная иллюстрация расширения пространства на примере резинового шара с наклеенными на него монетками-галактиками. Раздувание шара приводит к тому, что расстояние между монетами возрастает, причём каждая из них может считать себя центром, от которого удаляются все остальные.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Уравнения движения в расширяющейся Вселенной»

Представляем Вашему вниманию похожие книги на «Уравнения движения в расширяющейся Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Уравнения движения в расширяющейся Вселенной»

Обсуждение, отзывы о книге «Уравнения движения в расширяющейся Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x