Произведём «измерение» поляризации этих двух монет (фотонов). Измерение фотонов производится с помощью поляризаторов, а «измерение» монет произведём их бросанием на стол. Каков результат этого эксперимента? Сколько бы мы ни измеряли запутанные фотоны, сколько бы, соответственно, мы ни подбрасывали монеты, мы всегда получаем один и тот же результат: если спин одного фотона направлен вверх, то спин второго направлен вниз. Соответственно, если одна монета упала решкой вверх, то вторая обязательно упала решкой вниз. И наоборот. Такой эксперимент и демонстрирует явление квантовой запутанности. Конечно, монеты никогда не ведут себя так хитро: если одна упала решкой вверх, то другая – обязательно решкой вниз. А вот запутанные фотоны – ведут.
Такое поведение запутанных частиц в 1935 году поставили под сомнение Эйнштейн, Подольский и Розен. Изложенные ими взгляды получили название «ЭПР-парадокса» [21]. В 1965 году другой исследователь – Белл математически показал ошибочность взглядов Эйнштейна [4, 19], а в 1981 году известный физик Ален Аспект подтвердил доводы Белла экспериментально [1, 2, 3, 5, 6]. Оказалось, что, действительно, запутанные фотоны вели себя в точности так, как мы выше это обрисовали: многочисленные пары фотонов поляризовались таким удивительным образом, будто чувствовали друг друга. Вот в этом и состоит удивительное свойство квантовой запутанности. Когда одна из квантовых частиц (первый фотон) получает в результате измерения некоторую поляризацию, зависящую от измерительного прибора – поляризатора, так в тот же момент другая квантовая частица получает противоположную поляризацию, что подтверждает второй измерительный прибор. Обе эти поляризации «рождаются» одновременно. Как только первая частица поляризовалась, так сразу же, мгновенно, независимо от расстояния поляризуется и вторая частица. На монетах это выглядело бы так: на северном полюсе монета упала решкой вверх, на южном в тот же самый момент другая монета упала решкой вниз. И так при каждом подбрасывании, сколько бы их ни было.
О явлении запутанности стали говорить, что оно нелокально, то есть поведение частиц синхронно, но не связано с их локальной связью, не является локальным. Эйнштейн так описывал локальность связей:
«… (состояние) системы S 2не зависит от того, что проделывают с пространственно отделённой от неё системой S 1» [20].
«… так как во время измерения эти две системы уже не взаимодействуют, то в результате каких бы то ни было операций над первой системой, во второй системе уже не может получиться никаких реальных изменений» [21].
Следовательно, запутанные частицы не подчиняются закону локальности. Сказав это, мы, собственно, ещё не видим явного парадокса, хотя уже догадываемся, что поведение частиц как-то плохо увязывается с положениями теории относительности об ограниченности скорости передачи взаимодействия. Вроде бы частицы взаимосвязаны, вроде бы состояние от одной к другой передаётся мгновенно, но нелокальность отвергает это: нет связи и поэтому ничего не передаётся. Надо признать, что одной лишь констатации «нелокальность» недостаточно. Хочется всё-таки прояснить, что конкретно за нею скрывается. Ведь мы явно видим: поведение второй частицы предопределено поведением первой.
В популярной литературе есть попытки как-то аллегорически объяснить такую «несвязанную связь». Обычно приводится пример с парой перчаток. Пара перчаток, понятное дело, это одна правая и одна левая, то есть выглядит как своеобразная «запутанность». Предположим, что одну из перчаток «втёмную» отправили в Лондон, а вторая осталась в Париже. Когда в Лондоне вскрывают посылку и видят правую перчатку, то тут же, мгновенно становится известно, что в Париже осталась левая! Чем не явление нелокальности?! И правая – левая проявилось, и к тому же мгновенно. Очевидно, что «правая – левая» сформировалось в момент разделения пары перчаток. А что, если и квантовые частицы в момент запутывания тоже сформировались и затем просто сообщили измерительным приборам свои состояния? Возможно, ЭПР-парадокс появился исходя из подобных же соображений. Действительно, при его создании Эйнштейн ввёл понятие «элементов физической реальности», которые несли в себе информацию о поляризации и проявляли её при измерении частиц. Впоследствии вместо этих элементов стали говорить о «дополнительных переменных» или «скрытых параметрах». А теории, использующие эти взгляды назвали «теориями с дополнительными переменными (параметрами)».
Читать дальше