Александр Волошинов - Математика и искусство

Здесь есть возможность читать онлайн «Александр Волошинов - Математика и искусство» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1992, ISBN: 1992, Издательство: Просвещение, Жанр: Детская образовательная литература, Математика, art_criticism, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика и искусство: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика и искусство»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика и искусство», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заключение

То, что я понял — превосходно. Думаю, таково же и то, чего я не понял.

Сократ

Только кончая задуманное сочинение, мы уясняем себе, с чего нам следовало его начать.

Б. Паскаль

Книга закончена. Но именно поэтому хочется вернуться к ее началу, ибо, как сказал один мудрец задолго до Паскаля, "идет ветер к югу и переходит к северу, кружится, кружится на ходу своем, и возвращается ветер на круги свои". Поэтому, подойдя к заключению, хочется вернуться к началу книги, к мудрому древнему знаку Ин-Ян.

Возможно, кому-то могло показаться, что автор предпринял попытку навести "математический" порядок в искусстве, а то и вовсе "математизировать" искусство, как это происходит сегодня со многими науками. Нет и еще раз нет! Автор полностью солидарен с замечательным русским поэтом Аполлоном Майковым, который писал:

Гармонии стиха божественные тайны
Не думай разгадать по книгам мудрецов:
У брега сонных вод, один бродя, случайно,
Прислушайся душой к шептанью тростников...

Искусство — самостоятельная форма познания реальной действительности, оно живет своей жизнью, оно соткано из хитросплетения диалектически противоположных начал — материального и духовного, рационального и иррационального, объективного и субъективного, логичного и алогичного, сконструированного и сотворенного, рассчитанного и угаданного... Ни в науке, ни в технике нет подобного переплетения противоположностей. Поэтому в той своей части, которая описывается первыми прилагательными, искусство доступно точному и прежде всего математическому анализу. А в части, описываемой вторыми прилагательными, искусство неподвластно математике, да и не нужно разрушать эту волшебную часть искусства логикой. К этой части искусства необходимо "прислушаться душой".

Вот почему словосочетание, стоящее в заголовке книги — "Математика и искусство", на протяжении столетий вызывает диаметрально противоположные суждения. Приведем только два и только служителей муз. Английский художник У. Хогарт писал о сущности художественного метода: "Все математические представления следует совершенно устранить из нашего метода, потому что они для него не имеют никакого смысла". А вот французский скульптор Антуан Бурдель (1861-1929) считал: "Искусство — это завуалированная алгебра, отнимающая жизнь у тех, кто стремится приподнять ее покрывало".

Однако автору импонирует третье мнение, отражающее глубокое понимание диалектики искусства, мнение, которое высказал в дискуссии ученых и художников профессор М. Каган: "... невозможно проверить алгеброй гармонию и невозможно проверить — т. е. познать — гармонию без алгебры". Именно такой взгляд на математику и искусство символизирует древнекитайский знак гармонии Ин-Ян.

Искусство — это не только "содержание", но и "форма". Последняя, по всей видимости, имеет сходные законы построения (формообразования) как в природе, так и в искусстве. И как все закономерное форма должна подчиняться прежде всего математическим законам. Но не убъет ли знание законов формообразования искусство, не превратит ли искусство в технологический процесс изготовления штампов? Истинному искусству это не грозит. Имхотеп и Хесира, По-ликлет и Пракситель, Дюрер и Леонардо да Винчи, Моцарт и Бах, Палладио и Ле Корбюзье — все они на каких-то этапах отдавали поискам законов формообразования (в том числе и математических) больше усилий, чем "беспорядочному" и "безрассудному" искусству. Однако эти поиски, эта "математика искусства" не убили в них художников, а, скорее, наоборот, помогли стать великими. Более того, знание законов формообразования часто было для художника тем "магическим кристаллом", который помогал найти живое русло истины в мучительно тревожных сумерках, сопровождающих начало любого пути. Вспомним Пушкина:

И даль свободного романа
Я сквозь магический кристалл
Еще не ясно различал.

В главе 4 мы видели, что симметрия форм живой природы обязана своим существованием прежде всего закону тяготения. Но тяготение — вечный закон природы; значит, вечна и симметрия, и, значит, вечно симметрия будет ассоциироваться с красотой. С доисторических времен симметрия играла огромную роль в искусстве. Та же заглавная роль симметрии в природе в полной мере осознана наукой нашего времени. Таким образом, математические законы симметрии становятся крепким связующим звеном между наукой и искусством.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика и искусство»

Представляем Вашему вниманию похожие книги на «Математика и искусство» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика и искусство»

Обсуждение, отзывы о книге «Математика и искусство» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x