Александр Киселев - Математика шахматной доски

Здесь есть возможность читать онлайн «Александр Киселев - Математика шахматной доски» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Детская образовательная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика шахматной доски: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика шахматной доски»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Задачи, связанные с шахматной доской, обсуждаются на математических кружках издавна. Наверное, одной из причин этого является одновременная обиходная простота шахмат (все видели доску и большинство даже слышали, как ходят фигуры) и их невероятная сложность (гроссмейстеры учатся годами, чтобы выигрывать в этой игре) – этот дуализм, который делает шахматную доску, возможно, наилучшим объектом для исследования на первом году кружка, когда детям ещё чужды абстракции и важны связи с осязаемым миром.

Математика шахматной доски — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика шахматной доски», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математика шахматной доски

Александр Сергеевич Киселев

© Александр Сергеевич Киселев, 2022

ISBN 978-5-0056-2265-5

Создано в интеллектуальной издательской системе Ridero

Вступление

Взаимоотношения шахмат и математики достойны если не целого романа-эпопеи, то уж как минимум объёмной повести. Математики знают, что в шахматах, как и в любой другой игре с конечным числом позиций, существует выигрышная стратегия для одного из игроков – за это шахматистам впору ненавидеть математиков. Однако общее число всех возможных позиций настолько огромно, что даже современным компьютерам не под силу провести их полный перебор – и за это математикам уже впору возненавидеть шахматистов (или, вернее, того, кто эту будоражащую умы игру изобрёл).

Тем не менее, современные шахматные программы уже стабильно обыгрывают игроков-людей, даже не имея возможности перебрать все варианты – ведь и частичный перебор машине удаётся намного лучше, чем человеку. Но, несмотря на значительные успехи компьютеров, шахматы вполне живы и активно развиваются, как вид спорта.

Многие известные шахматисты (например, А. Е. Карпов или М. Н. Таль) в юности проявляли математические способности и выигрывали математические олимпиады, а М. М. Ботвинник и вовсе был доктором техническим наук и крупным специалистом по электротехнике. Многие известные математики (например, академик А. А. Марков) и физики (например, академик П. Л. Капица) достаточно хорошо играли в шахматы.

Задачи, связанные с шахматной доской, обсуждаются на математических кружках 1 1 Об устройстве непосредственно моего математического кружка написано в Приложении 1. издавна. Наверное, одной из главных причин этого является одновременная обиходная простота шахмат (все дети хоть раз видели доску и большинство даже слышали, как ходят основные фигуры) и их невероятная сложность (ведь гроссмейстеры учатся годами, чтобы научиться выигрывать в этой игре) – этот дуализм, который и делает именно шахматную доску, возможно, наилучшим объектом для исследования на первом году математического кружка, в котором детям ещё чужды абстракции и так важны связи с реальным осязаемым миром.

Задачи, которые обсуждаются в этой книге, делятся на два типа: первый будет связан с разрезанием самой доски и, как правило, вообще не использует магию шахмат (хотя там иногда нелишне бывает вспомнить о раскраске, характерной для шахматной доски), а второй связан с шахматными фигурами, непосредственно с тем, как они ходят и бьют.

Важно отметить, что кружковские задачи о шахматной доске не связаны с шахматными задачами, которые обсуждаются в соответствующих секциях. И, хотя глобальные цели у математического кружка и шахматной секции достаточно похожи – научить ребёнка логически мыслить, планировать, просчитывать на несколько шагов вперёд – методы достижения этих целей всё-таки разные. Олимпиадная математика не растит шахматиста, а лишь воспитывает рациональное и логическое мышление посредством понятных всем примеров. Хотя примеры успешного совмещения олимпиадной математики и спортивных шахмат встречаются среди способных школьников не так уж редко.

В завершение вступительной части отмечу, что ещё больше интересных сюжетов, чем я опишу дальше, на стыке шахмат и математики можно почерпнуть в прекрасной книге [4], написанной шахматистом и кандидатом технических наук Евгением Гиком сорок лет назад. С тех пор ничего настолько масштабного и подробного по теме не выходило.

Задачи на разрезание

Полимино

Клетчатые фигурки, о которых пойдёт речь в этом параграфе, известны людям с древности. Однако публикации различных результатов, связанных с ними, относятся к первой половине ХХ века, а сам термин «полимино» (от греческого πολύς «многий, множественный») ввёл в употребление американский математик Соломон Голомб, в 1953 г. выступивший с докладом о «новой математической забаве» в Гарвардском математическом клубе. Он же впервые использовал названия для конкретных фигур: мономино (состоящее из одной клетки), домино (из двух), тримино, тетрамино, пентамино и гексамино. Впоследствии Мартин Гарднер значительно поспособствовал популяризации этих терминов. В книгах [1], [2] и [3] можно найти ещё много любопытной информации.

Как обычно, за сто с лишним лет после первого появления этих задач (и шестьдесят с лишним после появления названия) задачи, связанные с полимино, сильно помолодели – если тогда их решали взрослые, дипломированные и остепенённые математики, то теперь основными решателями таких задач стали школьники. Некоторые из них вполне доступны даже первокласснику (что проверено на реальных первоклассниках), поскольку не требуют никаких знаний.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика шахматной доски»

Представляем Вашему вниманию похожие книги на «Математика шахматной доски» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика шахматной доски»

Обсуждение, отзывы о книге «Математика шахматной доски» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x