
В нормальной ситуации только один канальный уровень может начинать передачу. Другими словами, только одна из программ должна содержать обращения к процедурам to_physical_layer и start_timer вне основного цикла. Начинающая машина получает первый пакет от своего сетевого уровня, создает из него кадр и посылает его.
Когда этот (или другой) кадр прибывает, получающий канальный уровень проверяет, не является ли этот кадр дубликатом, аналогично протоколу 3. Если это тот кадр, который ожидался, он передается сетевому уровню, и окно получателя сдвигается вверх.
Поле подтверждения содержит номер последнего полученного без ошибок кадра. Если этот номер совпадает с номером кадра, который пытается передать отправитель, последний понимает, что этот кадр успешно принят получателем и что он может пересылать следующий кадр. В противном случае он должен продолжать попытки переслать тот же кадр.
Теперь давайте изучим протокол 4 и посмотрим, насколько он устойчив к нестандартным ситуациям. Предположим, что машина A пытается послать кадр 0 машине B, а машина B пытается послать кадр 0 машине A. Предположим также, что на машине A установлен слишком короткий период ожидания подтверждения. Соответственно, машина A посылает серию одинаковых кадров со значениями полей seq=0 и ack=1.
Когда первый неповрежденный кадр прибудет на машину B , он будет принят, и значение переменной frame_expected будет установлено равным 1. Все последующие входящие кадры будут проигнорированы, поскольку машина B будет теперь ожидать кадр с порядковым номером 1, а не 0. Более того, поскольку у всех кадров дубликатов значение поля ack=1, а машина B продолжает ожидать подтверждения для кадра 0, то B и не станет запрашивать новый пакет у своего сетевого уровня.
В ответ на каждый отвергнутый дубликат, присылаемый машиной A, машина B посылает кадр, содержащий поля seq=0 и ack=0. Наконец, один из этих кадров принимается машиной A , в результате чего машина A переходит к передаче следующего пакета. Никакая комбинация потерянных кадров или преждевременно истекших интервалов ожидания не может заставить этот протокол ни выдать сетевому уровню дубликат пакета, ни пропустить пакет, ни зависнуть. Протокол работает корректно.

Рис. 3.12. Два сценария для протокола 4: а — нормальная ситуация; б — нештатная ситуация. Нотация: (seq, ack, номер пакета). Звездочка означает, что сетевой уровень принял пакет
Однако отношения между протоколами могут быть довольно непростыми. Если обе стороны одновременно вышлют друг другу начальный пакет, возникает запутанная ситуация, проиллюстрированная на рис. 3.12. В левой части рисунка показано нормальное функционирование протокола. Правая часть рисунка демонстрирует аномальную ситуацию. Если машина B ожидает первого кадра от машины A, прежде чем послать свой первый кадр, то последовательность будет такой, как показана в левой части рисунка. При этом принимается каждый кадр.
Однако если машины A и B одновременно начнут передачу, их первые кадры пересекутся, и канальные уровни попадут в ситуацию б. В ситуации а с каждым кадром прибывал новый пакет, и дубликатов нет. В ситуации б половина кадров содержит дубликаты, несмотря на то что ошибок в канале связи не было. Подобные ситуации могут возникнуть в результате преждевременного истечения периода ожидания, даже если одна сторона начнет диалог первой. В самом деле, если время ожидания истечет слишком быстро, кадр может быть послан три и более раз, приводя к ненужной трате ценных ресурсов.
3.4.2. Протокол с возвратом на n
До сих пор мы по умолчанию подразумевали, что время, необходимое на передачу кадра от отправителя к получателю, и время, необходимое на передачу подтверждения от получателя к отправителю, пренебрежимо мало. Иногда это предположение является совершенно неверным. В таких ситуациях большое время прохождения кадров по сети может значительно снижать эффективность использования пропускной способности канала. В качестве примера рассмотрим спутниковый канал связи с пропускной способностью 50 Кбит/с и временем, требуемым для прохождения сигнала в оба конца, равным 500 мс. Попытаемся использовать протокол 4 для пересылки кадров размером в 1000 бит через спутник. В момент времени t = 0 отправитель начинает посылать первый кадр. В момент времени t = 20 мс кадр полностью послан. В момент времени t = 270 мс получатель принял кадр полностью и отправил обратно подтверждение. В итоге в лучшем случае только через 520 мс после начала передачи кадра подтверждение будет получено отправителем. В данном случае еще предполагается, что приемник не тратит времени на обработку принятого кадра и подтверждение такое короткое, что временем его передачи и приема можно пренебречь. Это означает, что передающая машина была заблокирована в течение 500/520, или 96 % времени. Другими словами, использовалось только 4 % доступной пропускной способности. Очевидно, что сочетание большого времени прохождения сигнала, высокой пропускной способности и коротких кадров совершенно неприемлемо с точки зрения эффективности.
Читать дальше
Конец ознакомительного отрывка
Купить книгу