
Что это значит? Где “наши” 220 вольт?
Все просто (хотя и не совсем). Ток в сети переменный - он меняет свое направление с частотой 50 раз в секунду. В отличие к примеру, от батарейки - если на ней написано 1.5 вольта, это значит что на ней действительно 1.5 вольта и направление тока не меняется. Но вернемся к розетке. Ток в нее подается не просто так, а с целью выполнения какой-либо работы. Как измерить работу переменного тока, который в разные моменты времени движется то в одну, то в другую сторону? Для этого было введено понятие действующего напряжения - величины постоянного тока , способного выполнить ту же работу (например нагрев спирали электроплитки). Напряжение, которое показывает осциллограф - называется амплитудным. Эти величины связаны простой формулой:

220 умноженное на √2, дает как раз 310В. Разумеется, обычный тестер откалиброван в “бытовых” единицах, в режиме измерения переменного тока он покажет 220В. А если выпрямить напряжение, например диодным мостиком, то тестер покажет как раз 310В постоянного тока.
И еще немного про переменный ток. Откуда берется напряжение в 380 вольт? Ток от трансформатора подается по 3м фазам: это 3 линии, напряжение в которых сдвинуто на разный угол друг относительно друга.
Картинка из Википедии:

Нулевой провод - общий. В квартиры подается напряжение с одной из фаз, значением в стандартные 220 вольт. Это напряжение называется фазным. Если же используется 3х-фазная сеть целиком, то напряжение между двумя фазами, например в точках a и с на рисунке, составляет как раз 380 вольт. Это напряжение называется линейным.
Математически, оба напряжения связаны простой формулой:

Действительно, 220*√3 = 380.
Кстати, обрыв нулевого провода в доме - серьезная неисправность, из-за чего в квартиры может быть подано линейное напряжение, составляющее те самые 380В. Такой случай произошел лично с автором, впрочем ущерб оказался невелик, перегорели лишь настенные электронные часы и несколько блоков питания. Но при отсутствии в доме людей это может привести и к пожару, такие случаи не редкость. Так что тем, у кого в квартире старая проводка, рекомендуется установить в электрощиток устройство защиты от перенапряжения, его цена невелика, и явно дешевле ремонта в квартире.
19. Приложение 1 - Вычисления с помощью видеокарты
Еще 20 лет назад, во времена процессоров 80386, пользователям приходилось покупать математический сопроцессор, позволяющий быстрее выполнять вычисления с плавающей точкой. Сейчас такой сопроцессор покупать уже не надо - благодаря прогрессу в игровой индустрии, даже встроенная видеокарта компьютера имеет весьма неплохую вычислительную мощность. Например, даже бюджетный видеочип Intel Graphics 4600 имеет 20 вычислительных блоков, что превышает количество ядер “основного” процессора. Разумеется, каждое ядро GPU по отдельности слабее CPU, но здесь как раз тот случай, когда количество дает преимущество над качеством. Вычисления с помощью GPU сейчас очень популярны - от майнинга биткоинов до научных расчетов, диапазон ценовых решений также различен, от “бесплатной” встроенной видеокарты до NVIDIA Tesla ценой более 100тыс рублей. Поэтому интересно посмотреть, как же это работает.
Есть две основные библиотеки для GPU-расчетов - NVidia CUDA и OpenCL. Первая обладает большими возможностями, однако работает только с картами NVIDIA. Библиотека OpenCL работает с гораздо большим числом графических карт, поэтому мы рассмотрим именно ее.
Основной принцип GPU-расчетов - параллельность вычислений. Данные, хранящиеся в “глобальной памяти” (global & constant memory) устройства, обрабатываются модулями (каждый модуль называется “ядром”), каждый из которых работает параллельно с другими. Модуль имеет и свою собственную память для промежуточных данных (private memory). Так это выглядит в виде блок-схемы:

Таким образом, если задача может быть разбита на небольшие блоки, параллельно обрабатывающие небольшой фрагмент блока данных, такая задача может эффективно быть решена на GPU.
Читать дальше