Если этим кускам удается стать достаточно большими и достичь размера планетезимали (небесного тела размером с маленький астероид, скажем, от 10 м до 1 км), они могут двигаться сквозь газ, почти не испытывая встречного сопротивления и не скручиваясь по спирали к центру облака (или скручиваясь, но очень медленно), и уцелеть в противостоянии с газом (который будет вытеснен, о чем пойдет речь ниже). Достигнув километрового диаметра, эти тела, уже достаточно тяжелые, смогут притягивать еще больше массы и расти еще быстрее.
В то же время объекты среднего размера, от нескольких сантиметров до метра в диаметре, подвергнутся сильному встречному сопротивлению газа, которое заставит их быстро закручиваться по спирали и сгинуть в Протосолнце всего через 200 лет – мгновение по космическим меркам! Вдобавок эти куски будут недостаточно тяжелыми, чтобы притягивать друг друга, наоборот, они будут взаимно отталкиваться.
Образовавшиеся из крошечных пылинок планеты должны нарастить массу и вырасти с нескольких сантиметров до метра (а из‑за своего размера они не очень‑то хорошо схватывались друг с другом), чтобы не улететь по спирали прямо в Протосолнце. И дорасти до метрового размера планеты должны невероятно быстро – за несколько сотен лет, в противном случае они сгинут. Этот парадокс, называемый барьером одного метра, также пока не разрешен. Однако новые исследования показывают, что давление растущих комков пыли на газ заставляет их сбиваться в кластеры – сплотившись в кучи большей массы, они защищают друг друга от встречного сопротивления газа, прямо как велосипедисты на «Тур де Франс».
В то время как накапливались первые комочки пыли, коллапсирующая масса в центре облака нагревалась, становясь звездой. Еще до начала термоядерных реакций эта масса уже была достаточно горячей, чтобы нагреть внутреннюю часть газового диска. Комочки пыли, собравшиеся в более горячем внутреннем диске, представляли собой в основном минеральные соединения, в конечном счете из них образовались камни. Во внешних частях будущей Солнечной системы было достаточно прохладно, там могли скапливаться льды и жидкости, такие как вода, метан и аммоний. Граница между двумя этими областями называется снеговой линией, она проходит недалеко от орбиты Юпитера – между орбитами Марса и Юпитера.
Из‑за давления газа на мелкие частицы, о котором говорилось выше, крупицы и кусочки льда, стремящиеся по спирали к центру облака, испарились бы при пересечении снеговой линии, и высвобождение газа привело бы к появлению зон с относительно высоким давлением. Газ в диске за пределами зон высокого давления испытывал бы воздействие силы, направленной наружу, что способствовало бы дальнейшему ослаблению гравитации, заставляя газ двигаться по орбите Протосолнца еще медленнее. Это вызвало бы еще большее встречное сопротивление и давление на летящие быстрее твердые частички, что ускорило бы их движение по спирали в снеговую линию. Газ в пределах снеговой линии и зон высокого давления вызвал бы дополнительное давление, направленное внутрь, по направлению к Протосолнцу, что усилило бы гравитационное притяжение, заставляя газ вращаться быстрее, чем твердые частицы, уже не оказывая им сопротивления, а создавая «попутный ветер». Частицы могли подняться на более высокую орбиту и выйти по спирали в обратную сторону. По существу, частицы будут втягиваться в обладающую высоким давлением снеговую линию с обеих сторон, и она будет действовать как ловушка для крупиц льда. (Весьма неожиданный эффект, ведь жидкости обычно устремляются к зонам низкого давления, достаточно вспомнить обычный слив. Но взаимодействие газа и частиц во вращающемся диске гораздо сложнее, чем поток воды, стекающей из ванны.)
Скопление газа и льда в снеговой линии, возможно, создало благоприятную почву для формирования планеты‑гиганта – Юпитера. По массе – и орбитальной энергии или моменту импульса – это самый крупный планетный объект Солнечной системы. Если не принимать во внимание тот факт, что на Земле живем мы, то основная часть содержимого Солнечной системы, в терминах массы, энергии и момента импульса, приходится на счет Солнца и Юпитера. Но это лишь показывает, что размер не всегда имеет значение (по крайней мере, мы, земляне, так бы и сказали).
Как только Юпитер начал формироваться, это ускорило рост ближайших газовых гигантов, например Сатурна. В частности, гравитационное притяжение Юпитера ускоряло бы медленное вращение масс за пределами его орбиты, заставляя их уходить по спирали во внешнее пространство. Частицы пыли и льда, закручивающиеся по спирали по направлению к Юпитеру с еще более высоких орбит, слились бы с этим уходящим потоком, что привело бы к накоплению массы и образованию фидерной зоны для другой гигантской планеты, например Сатурна.
Читать дальше
Конец ознакомительного отрывка
Купить книгу