Вероятность рассеяния в разных направлениях можно измерить в опыте, изображенном на фиг. 1.7, а.

Фиг. 1.7. Рассеяние a -частиц на ядрах кислорода, наблюдаемое в системе центра масс.
Счетчик в положении D 1 может быть сконструирован так, чтобы детектировать только a-частицы; счетчик в положении D 2может быть устроен так, чтобы детектировать кислород просто для проверки. (В системе центра масс детекторы должны смотреть друг на друга, в лабораторной — нет.) Опыт заключается в измерении вероятности рассеяния в разных направлениях. Обозначим через f (q) амплитуду рассеяния в счетчики, когда они расположены под углом q; тогда | f (q)| 2— наша экспериментально определяемая вероятность.
Можно было бы провести и другой опыт, в котором наши счетчики реагировали бы и на a-частицу, и на ядро кислорода. Тогда нужно сообразить, что будет, если мы решим не заботиться о том, какая из частиц попала в счетчик. Разумеется, когда кислород летит в направлении q, то с противоположной стороны, под углом (p-q), должна оказаться a-частица (фиг. 1.7,б). Значит, если f (q) — амплитуда рассеяния кислорода на угол 0, то f (р-q) — это амплитуда рассеяния a-частицы на угол θ. Таким образом, вероятность того, что какая-то частица окажется в счетчике, который находится в положении d 1, равна

Заметьте, что в принципе оба состояния различимы. Даже если в этом опыте мы их не различали, мы могли бы это сделать. И в соответствии с нашими прежними рассуждениями мы, стало быть, должны складывать вероятности, а не амплитуды.
Приведенный выше результат справедлив для многих ядер. Мишенью здесь могут служить и кислород, и углерод, и бериллий, и водород. Но он неверен при рассеянии a-частиц на a-частицах. В том единственном случае, когда обе частицы в точности одинаковы, экспериментальные данные не согласуются с предсказаниями формулы (1.14). Например, вероятность рассеяния на угол 90° в точности вдвое больше предсказанной вышеизложенной теорией — с частицами, являющимися ядрами «гелия», номер не проходит. Если мишень из Не 3, а налетают на нее a-частицы (Не 4), то все хорошо. И только когда мишень из Не 4, т. е. ее ядра тождественны падающим a-частицам, только тогда рассеяние меняется с углом каким-то особым образом.
Быть может, вы уже догадались, в чем дело? В счетчике a-частица может очутиться по двум причинам: либо из-за рассеяния налетевшей a-частицы на угол q, либо из-за рассеяния ее на угол (p-q). Как мы можем удостовериться, кто попал в счетчик — частица-снаряд или частица-мишень? Никак. В случае рассеяния a-частиц на a-частицах существуют две альтернативы, различить которые нельзя. Приходится дать амплитудам вероятности интерферировать при помощи сложения, и вероятность обнаружить в счетчике a-частицу есть квадрат этой суммы:

Это совсем не то, что (1.14). Возьмите, скажем, угол я/2 (это легче себе представить). При q=p/2 мы, естественно, имеем f (q)=f(p-q), так что из (1.15) вероятность оказывается равной

А с другой стороны, если бы не было интерференции, формула (1.14) дала бы только 2 | f (p/2)| 2. Так что на угол 90° рассеивается вдвое больше частиц, чем можно было ожидать. Конечно, и под другими углами результаты будут другие. И мы приходим к необычному выводу: когда частицы тождественны, происходит нечто новое, чего не бывало, когда частицы можно было друг от друга отличить. При математическом описании вы обязаны складывать амплитуды взаимоисключающих процессов, в которых обе частицы просто обмениваются ролями, и происходит интерференция.
Еще более неожиданное явление происходит с рассеянием электронов на электронах или протонов на протонах. Тогда не верен ни один из прежних результатов! Для этих частиц мы должны призвать на помощь совершенно новое правило: если попадающий в некоторую точку электрон обменивается своей индивидуальностью с другим электроном, то новая амплитуда интерферирует со старой в противофазе. Это все равно интерференция, но с обратным знаком. В случае a-частиц, когда происходит обмен a-частицами, достигающими счетчика, амплитуды интерферируют с одним и тем же знаком. А в случае электронов амплитуды обмена интерферируют с разными знаками. С точностью до одной детали, о которой будет сейчас сказано, правильная формула для электронов в опыте, подобном изображенному на фиг. 1.8, такова:
Читать дальше