
Интегрируя по t , получаем следующее выражение для импульса электрона:
(17.7)
где р 0— импульс, с которым электрон начинает двигаться, a DB cp— последующее изменение B ср. Работа бетатрона — машины, ускоряющей электроны до больших энергий, основана именно на этой идее.
Чтобы понять, как работает бетатрон, необходимо представлять себе принцип движения электрона по окружности. В гл. 11 (вып. 1) мы уже обсуждали этот принцип. Если на орбите электрона создать магнитное поле В, возникнет поперечная сила qvXB, которая при соответствующем выборе В может заставить электрон двигаться по предположенной орбите. В бетатроне эта поперечная сила вызывает движение электрона по круговой орбите постоянного радиуса. Мы можем определить, каким должно быть магнитное поле на орбите, опять с помощью релятивистского уравнения движения, но на этот раз для поперечной компоненты силы. В бетатроне (см. фиг. 17.4) поле В перпендикулярно v, поэтому поперечная сила равна qvB . Таким образом, сила равна скорости изменения поперечной компоненты импульса p t :

(17.8)
Когда частица движется по окружности, Скорость изменения поперечного импульса равна величине полного импульса, умноженной на w — угловую скорость вращения (согласно аргументам, приведенным в гл. 11, вып. 1):

(17.9)
где, поскольку движение круговое,

(17.10)

Полагая магнитную силу равной поперечному ускорению, имеем
(17.11)
где В орб— поле при радиусе, равном r .
В приведенном в действие бетатроне импульс электрона, согласно выражению (17.7), растет пропорционально B ср, и чтобы электрон продолжал двигаться по собственной окружности, равенство (17.11) должно по-прежнему выполняться вместе с ростом импульса электрона. Величина B op бдолжна расти пропорционально импульсу р . Сравнивая (17.11) с (17.7), определяющим р, мы видим, что должно выполняться следующее соотношение между В ср — средним

магнитным полем внутри орбиты радиуса r и магнитным полем В ор6на орбите:
(17.12)
Для правильной работы бетатрона нужно, чтобы среднее магнитное поле внутри орбиты росло в два раза быстрее магнитного поля на самой орбите. При этих условиях с ростом энергии частицы, увеличивающейся за счет индуцированного электрического поля, магнитное поле на орбите растет как раз со скоростью, нужной для удержания частицы на окружности.
Бетатрон используется для разгона электронов до энергий в десятки или даже в сотни миллионов электронвольт. Однако по ряду причин для ускорения электронов до энергий, много больших нескольких сот миллионов электронвольт, эта машина становится невыгодной. Одна из этих причин — трудность достижения на практике требуемой высокой величины среднего магнитного поля внутри орбиты, а вторая — несправедливость формулы (17.6) для очень больших энергий, так как в ней не учитывается потеря энергии частицей за счет излучения электромагнитной энергии (так называемое синхротронное излучение, см. гл. 34, вып. 3). По этим причинам ускорение электронов до самых больших энергий — до многих миллиардов электрон-вольт — совершается посредством машины другого рода, называемой синхротроном.
§ 4. Парадокс
Теперь мы хотели бы предложить вам некий кажущийся парадокс. Парадокс возникает тогда, когда при одном способе рассуждений получается один ответ, а при другом способе — совсем другой, так что мы остаемся в неведении, что же собственно должно быть на самом деле. Разумеется, в физике никогда не бывает настоящих парадоксов, потому что существует только один правильный ответ; по крайней мере мы верим, что природа поступает только единственным способом (и именно этот способ, конечно, правильный). Поэтому в физике парадокс — всего лишь путаница в нашем собственном понимании. Итак, вот наш : парадокс.
Представим, что мы конструируем прибор (фиг. 17.5), в котором имеется тонкий круглый пластмассовый диск, укрепленный концентрически на оси с хорошими подшипниками, так что он совершенно свободно вращается. На диске имеется катушка из проволоки — короткий соленоид, концентричный по отношению к оси вращения. Через этот соленоид проходит постоянный ток / от маленькой батареи, также укрепленной на диске. Вблизи края диска по окружности на равном расстоянии размещены маленькие металлические шарики, изолированные друг от друга и от соленоида пластмассовым материалом диска. Каждый из этих проводящих шариков заряжен одинаковым зарядом Q . Вся картина стационарна, и диск неподвижен. Предположим, что случайно, а может и намеренно, ток в соленоиде прекратился, но, разумеется, без какого-либо вмешательства извне. Пока через соленоид шел ток, более или менее параллельно оси диска проходил магнитный поток.
Читать дальше