§ 3. Полярные молекулы; ориентационная поляризация
Теперь рассмотрим молекулу, обладающую постоянным дипольным моментом р 0 , например молекулу воды. В отсутствие электрического поля отдельные диполи смотрят в разных направлениях, так что суммарный момент в единице объема равен нулю. Но если приложить электрическое поле, то сразу же происходят две вещи: во-первых, индуцируется добавочный дипольный момент из-за сил, действующих на электроны; эта часть приводит к той же самой электронной поляризуемости, которую мы нашли для неполярной молекулы. При очень точном исследовании этот эффект, конечно, нужно учитывать, но мы пока пренебрежем им. (Его всегда можно добавить в конце.) Во-вторых, электрическое поле стремится выстроить отдельные диполи, создавая результирующий момент в единице объема.

Фиг. 11.2. В газе полярных молекул отдельные моменты ориентированы случайным образом, средний момент в небольшом объеме равен нулю (а); под действием электрического поля в среднем возникает некоторое выстраивание молекул (б).
Если бы в газе выстроились все диполи, поляризация была бы очень большой, но этого не происходит. При обычных температурах и напряженностях поля столкновения молекул при их тепловом движении не позволяют им как следует выстроиться. Но некоторое выстраивание все же происходит, а отсюда и небольшая поляризация (фиг. 11.2). Возникающая поляризация может быть подсчитана методами статистической механики, описанными в гл. 40 (вып. 4).

Чтобы использовать этот метод, нужно знать энергию диполя в электрическом поле. Рассмотрим диполь с моментом р 0в электрическом поле (фиг. 11.3). Энергия положительного заряда равна qj (1), а энергия отрицательного есть —qj (2). Отсюда получаем энергию диполя

или
(11.14)
где q — угол между р 0и Е. Как и следовало ожидать, энергия становится меньше, когда диполи выстраиваются вдоль поля. Теперь с помощью методов статистической механики мы выясним, насколько сильно диполи выстраиваются. В гл. 40 (вып. 4) мы нашли, что в состоянии теплового равновесия относительное число молекул с потенциальной энергией U пропорционально


(11.15)
Фие. 11.3. Энергия диполя р 0 в поле Е равна —р 0·Е.
где U (х, у, z ) — потенциальная энергия как функция положения. Оперируя теми же аргументами, можно сказать, что если потенциальная энергия как функция угла имеет вид (11.14), то число молекул под углом 0, приходящееся на единичный телесный угол, пропорционально ехр (— U / kT ).

Полагая число молекул на единичный телесный угол, направленных под углом q, равным n (q), имеем
(11.16)

Для обычных температур и полей показатель экспоненты мал, и, разлагая экспоненту, можно воспользоваться приближенным выражением
(11.17)
Найдем n , проинтегрировав (11.17) по всем углам; результат должен быть равен N , т.е. числу молекул в единице объема. Среднее значение cos q при интегрировании по всем углам есть нуль, так что интеграл равен просто n 0 , умноженному на полный телесный угол 4p. Получаем

(11.18)

Из (11.17) видно, что вдоль поля (cosq=1) будет ориентировано больше молекул, чем против поля (cosq = -1). Поэтому в любом малом объеме, содержащем много молекул, возникнет суммарный дипольный момент на единицу объема, т.е. поляризация Р. Чтобы вычислить Р, нужно знать векторную сумму всех молекулярных моментов в единице объема. Мы знаем, что результат будет направлен вдоль Е, поэтому нужно только просуммировать компоненты в этом направлении (компоненты, перпендикулярные Е, при суммировании дадут нуль):
Читать дальше