Попробуем теперь по-иному подойти к этим вещам. Приведем другой пример того же явления, на этот раз с более подробными количественными оценками. Прежде мы измеряли импульс классическим способом: мы рассматривали направление, скорость, углы, и тому подобное; в этом заключался способ получения импульса путем классического анализа. Но раз импульс связан с волновым числом, то в природе существует и другой, совершенно иной путь измерения импульса частиц (все равно, фотона или любой другой), не имеющий классического аналога. В нем используется уравнение (38.2) и просто измеряется длина волны. Давайте попробуем таким способом измерить импульс.
Пусть имеется решетка со множеством линий (фиг. 38.3), на которую направлен пучок частиц. Мы неоднократно рассматривали эту задачу: когда у частиц есть определенный импульс, то вследствие интерференции в некотором направлении возникает очень резкий максимум. Мы также говорили о том, насколько точно можно определить этот импульс, т. е. какова разрешающая сила решетки. Мы не будем заново это все выводить, а сошлемся на гл. 30; там мы выяснили, что относительная неопределенность в длине волны, связанная с данной решеткой, равна 1/Nm, где N — количество линий решетки, а т — порядок дифракционного максимума. Иначе говоря,

(38.4)

Перепишем эту формулу в виде
(38.5)
где расстояние L показано на фиг. 38.3. Это — разность двух расстояний: расстояния, которое должна пройти волна (или частица), отразившись от нижней части решетки, и расстояния, которое нужно пройти, отразившись от верха решетки.
Другими словами, волны, образующие дифракционный максимум,— это волны, приходящие от разных частей решетки. Первыми прибывают волны, вышедшие снизу — это начало цуга волн, а потом следуют дальнейшие части цуга, от средних частей решетки, пока не придут волны от верха: точка цуга, удаленная от его начала на расстояние L . Значит, чтобы получить в спектре резкую линию, отвечающую определенному импульсу [с неопределенностью, даваемой формулой (38.4)], для этого нужен цуг волн длиной L . Если цуг чересчур короток (короче L ), то не вся решетка будет действовать. Волны, образующие спектр, будут отражаться при этом только от небольшого куска решетки, и решетка не будет хорошо работать — получится сильное размытие по углу. Чтобы его сузить, надо использовать всю ширину решетки так, чтобы хотя бы на одно мгновение весь цуг волн улегся одновременно на решетке и рассеялся ото всех ее частей. Потому-то длина цуга должна быть равна L ; тогда только неопределенность в длине волны окажется меньше, чем указано формулой (38.5). Заметим, что

(38.6)
поэтому

(38.7)
где L — длина цуга волн.
Это означает, что когда цуг волн короче L , то неопределенность в волновом числе превосходит 2 p / L . Иначе говоря, неопределенность в волновом числе, умноженная на длину волнового цуга (назовем ее на минутку Dx), больше 2 p . Мы назвали ее Dx потому, что это как раз неопределенность в положении частицы. Если цуг волн тянется только на конечном промежутке, то лишь там мы и можем обнаружить частицу с неопределенностью Dx;. Это свойство волн (тот факт, что произведение длины цуга волн на неопределенность в волновом числе, связанном с этим цугом, не меньше 2p) опять-таки хорошо знакомо всем, кто занимался волнами. И никакого отношения к волновой механике оно не имеет. Просто нельзя очень точно подсчитать число волн в конечной их веренице.
Объяснить это можно и по-другому. Пусть длина цуга волн L. Так как на концах цуга волны спадают (как на фиг. 38.1), то количество волн на длине L известно с точностью порядка ± 1. Но число волн на длине L равно kL /2 p . Значит, неопределенность в k равна 2 p / L . Опять получилась формула (38.7) как простое свойство всяких волн. Это остается верным всегда: и для волн в пространстве, когда k есть количество радиан на 1 см, a L — длина цуга, и для волн во времени, когда w есть число колебаний в 1 сек, а Т — «длина» во времени того же цуга. Иначе говоря, если цуг волн длится только конечное время Т, то неопределенность в частоте дается формулой
Читать дальше