Во всех социалистических странах в зависимости от степени утраты трудоспособности устанавливают одну из групп И. Например, в ЧССР различают полную и частичную И., в ГДР инвалидом признаётся лицо, неспособное зарабатывать 1/ 3прежнего заработка или утратившее не менее 20% трудоспособности вследствие трудового увечья. Проводится трудоустройство инвалидов (с использованием оставшейся трудоспособности), которым предоставляются различные льготы. В большинстве капиталистических стран частично обеспечивается только полная И. Мероприятия по переквалификации инвалидов финансируются за счёт самих застрахованных (т. е. за счёт страховых взносов).
Лит.: Основы врачебно-трудовой экспертизы, М., 1960; Флястер М. И., Трудовые права инвалидов, М., 1968
Г. Н. Соболевский.
Инва'р(от лат. invariabilis — неизменный) сплав на основе железа; содержит 36% никеля. Впервые получен во Франции в 1896 Ш. Гильомом. И. имеет малый коэффициент теплового расширения (1,5×10 -61/°С при температуре от — 80 до 100°C). Малое тепловое расширение И. объясняется тем, что магнитострикционное уменьшение объема при нагреве компенсирует тепловое расширение (см. Магнитострикция ). И. используется для изготовления геодезических проволок и лент, линеек, деталей измерительных и контрольных приборов и др. Температура плавления И. 1430 °С, предел прочности около 490 Мн/м 2(49 кгс/мм 2). Для повышения прочности И. подвергают холодной пластической деформации с последующей низкотемпературной термообработкой. После полировки сплав приобретает стойкость против коррозии в атмосферных условиях; на изделия из сплава, предназначенные для работы в агрессивных средах, наносят защитные покрытия. Разновидностями И. являются сплавы с особо низким коэффициентом теплового расширения (менее 1×10 -61/°С) — суперинвар, содержащий 64% железа, 32% никеля и 4% кобальта, и нержавеющий И., содержащий 54% кобальта, 37% железа и 9% хрома.
Инвариантность (в математике)
Инвариа'нтность,неизменность, независимость от физических условий. Чаще рассматривается И. в математическом смысле — неизменность какой-либо величины по отношению к некоторым преобразованиям (см. Инварианты ). Например, если рассматривать движение материальной точки в двух системах координат, повёрнутых одна относительно другой на некоторый угол, то проекции скорости движения будут изменяться при переходе от одной системы отсчёта к другой, но квадрат скорости, а следовательно, и кинетическая энергия останутся неизменными, т. е. кинетическая энергия инвариантна относительно пространственных вращений системы отсчёта. Важным случаем преобразований являются преобразования координат и времени при переходе от одной инерциальной системы отсчёта к другой ( Лоренца преобразования ). Величины, не изменяющиеся при таких преобразованиях, называются лоренц-инвариантными. Пример такого инварианта — так называемый четырёхмерный интервал , квадрат которого равен s 2 12= ( x 1— x 2) 2+ ( y 1— y 2) 2+ ( z 1— — z 2) 2— c 2( t 1— t 2) 2 , где x 1, y 1, z 1и x 2, y 2, z 2 — координаты двух точек пространства, в которых происходят некоторые события, a t 1и t 2 — моменты времени, в которые эти события совершаются, с — скорость света. Другой пример: напряжённости электрического Е и магнитного Н полей меняются при преобразованиях Лоренца, но E 2— H 2и ( EH ) являются лоренц-инвариантными. В общей теории относительности (теории тяготения ) рассматриваются величины, инвариантные относительно преобразований к произвольным криволинейным координатам, и т. д.
Важность понятия И. обусловлена тем, что с его помощью можно выделить величины, не зависящие от выбора системы отсчёта, т. е. характеризующие внутренние свойства исследуемого объекта. И. тесно связана с имеющими большое значение сохранения законами . Равноправие всех точек пространства (однородность пространства), математически выражающееся в виде требования И. некоторой функции, определяющей уравнения движения (так называемая лагранжиана) относительно преобразований переноса начала координат, приводит к закону сохранения импульса; равноправие всех направлений в пространстве (изотропия пространства) — к закону сохранения момента количества движения; равноправие всех моментов времени — к закону сохранения энергии и т. д. ( Нётер теорема ) .
Читать дальше