.
Если в этом Р. переставить члены так, чтобы за двумя положительными следовал один отрицательный:
,
то его сумма увеличится в 1,5 раза. Существуют признаки сходимости, применимые к не абсолютно сходящимся Р. Например, признак Лейбница: если
,
,
то знакочередующийся Р.
(10)
сходится. Более общие признаки можно получить, например, с помощью преобразования Абеля для Р., представимых в виде
. (11)
Признак Абеля: если последовательность { a n} монотонна и ограничена, а Р.

сходится, то Р. (11) также сходится. Признак Дирихле: если последовательность { a n} монотонно стремится к нулю, а последовательность частичных сумм Р.

ограничена, то Р. (11) сходится. Например, по признаку Дирихле Р.

сходится при всех действительных a .
Иногда рассматриваются Р. вида
.
Такой Р. называется сходящимся, если сходятся Р.
и 
сумма этих Р. называется суммой исходного Р.
Р. более сложной структуры являются кратные ряды, т. е. Р. вида
,
где
— заданные числа (вообще говоря, комплексные), занумерованные k индексами, n 1, n 2,..., n k , каждый из которых независимо от других пробегает натуральный ряд чисел. Простейшие из Р. этого типа — двойные ряды.
Для некоторых числовых Р. удаётся получить простые формулы для величины или оценки их остатка, что весьма важно, например, при оценке точности вычислений, проводимых с помощью Р. Например, для суммы геометрической прогрессии (2)
r n= q n+ 1/(1 - q ), ½ q ½< 1,
для P. (7) при сделанных предположениях
,
а для P. (10)
½ r n½ £ u n+1
С помощью некоторых специальных преобразований иногда удаётся «улучшить» сходимость сходящегося Р. В математике используются не только сходящиеся Р., но и расходящиеся. Для последних вводятся более общие понятия суммы Р. (см. Суммирование рядов и интегралов). Так, например, расходящийся Р. (5) можно просуммировать определённым способом к 1/ 2.
Функциональные ряды. Понятие Р. естественным образом обобщается на случай, когда членами Р. являются функции u n = u n ( x ) (действительные, комплексные или, более общо, функции, значения которых принадлежат какому-то метрическому пространству), определённые на некотором множестве Е. В этом случае ряд
,
(11)
называется функциональным.
Если Р. (11) сходится в каждой точке множества Е, то он называется сходящимся на множестве Е. Пример: Р.
сходится на всей комплексной плоскости. Сумма сходящегося Р. непрерывных, например, на некотором отрезке, функций не обязательно является непрерывной функцией. Условия, при которых на функциональные Р. переносятся свойства непрерывности, дифференцируемости и интегрируемости конечных сумм функций, формулируются в терминах равномерной сходимости Р. Сходящийся Р. (11) называется равномерно сходящимся на множестве Е, если во всех точках Е отклонение частичных сумм Р.

Читать дальше