Подчеркнем еще раз — и телевидение, и полиграфия построены всего на трех цветах — трех частотах. Всего тремя цветами создается таким образом более или менее удачная иллюзия естественности непрерывного спектра. Поставьте напротив телевизора спектрометр — он не зафиксирует ни оранжевого, ни желтого, ни голубого, хотя нам все эти цвета будут казаться .
Надеемся, читатель понял, какое положение мы скрыли этой физико-биологической притчей. Существует истинная предопределенность, уподобимая естественным цветам природы, и существует несовершенное восприятие человека, сравнимое с обманом дорогого журнала, — такое-то восприятие мы и связываем со свободной волей. Красивая картинка, но всего лишь картинка. Когда вы по человеческому разумению говорите о свободной воле, помните, что природных цветов неисчислимо больше, нежели три.
Примечание к главе XI
«КТО ИМЕЕТ УМ, СОЧТИ ЧИСЛО»
(взгляд с позиций неверного управителя)
Многие исследователи со времен предшествовавших даже Пифагору пытаются — и некоторые из них не без кажущегося успеха — развивать основанные на десятичной системе нумерологические построения. При этом, по собственному произволу складывая то числа, то значащие цифры чисел, умножая их и деля друг на друга, возводя в степень и извлекая корни, они находят определенные закономерности, основанные на выдающихся цифрах и числах, и далее делают вывод, что на них построен мир.
Однако такие исследователи не хотят или не могут понять того простого факта, что закономерности, открытые ими, характеризуют вовсе не мироздание, но всего-навсего десятичную систему счисления, выйти за рамки которой им не позволяет отсутствие образования и фантазии. Если же не связывать себя гордиевым узлом десяти, включая ноль, знаков, знакомых всем со школы, но попытаться выделить подобные закономерности, например, из восьмеричной (или еще какой-нибудь) системы, то, безусловно и жестко присутствуя там, такие закономерности окажутся совсем иными. Соответственно и бросающиеся в глаза числа и цифры будут другими. Что же построено на них? Неужто ничего? или какой-то другой мир? Да нет, мир-то тот же самый, но в первую очередь на этих закономерностях построена соответствующая система счисления...
Одним из применяемых нами методов отрицания лжеучений — и это полностью применимо к означенным нумерологиям — является способ, основанный на доведении мнения оппонента до логического абсурда. Как вам понравится, например, такое открытие: если складывать до тех пор, пока это возможно (а так поступают все без исключения нумерологи), значащие цифры числа, записанного не в десятичной, а в двоичной системе счисления и обозначающего любой стих Библии, предварительно приписав каждой букве соответствующее числовое значение, то мы во всех случаях неизменно получим единицу . Грандиозно, не правда ли? Сей грандиозности только добавляет тот факт, что данное правило справедливо для всего Вавилонского смешения языков мира. К тому же мы сможем присваивать буквам любые цифровые значения, — результат не изменится, — лишь бы только число было записано, как в компьютере, в двоичном коде. Но мало того, — такое правило справедливо не только для Библии, но и для учебника географии, и для поваренной книги, да и для любого даже самого затрапезного бульварного романа. Сие может означать ни больше, ни меньше, нежели то, что мироздание строится на числе один . Потрясающий вывод! Однако тот, кто еще не понял в чем тут фокус, пусть не торопиться подавать заявку на Нобелевскую премию, ибо сие является следствием общего и тривиального правила, справедливого для двоичного кода — там может быть лишь два значения: ноль и единица.
Единица, прибавленная к единице, в двоичной системе счисления даст число 10, и мы должны будем вновь, как учат нумерологи, продолжить сложение значащих цифр уже полученной суммы, — а такой результат дает опять-таки единицу.
Вероятно, стоит пояснить эту сторону двоичной арифметики. В двоичной системе счисления существует лишь два знака (символа): ноль (0) и единица (1). Понятное дело, что сами по себе сии символы полностью идентичны привычным нам десятичным знакам, однако этим внешнее сходство и заканчивается. Если к единице прибавить другую единицу, то в числе, обозначающем сумму (двойку десятичной системы), в разряде единиц уже не будет места, но даже если такое место и было бы чисто механически образовано, мы не имеем других знаков для обозначения цифр, кроме ноля и единицы. Точно так же нет места в разряде единиц и в десятичной системе, когда мы прибавляем единицу к девяти. Но на этот случай изобретена такая система записи (символика), когда в разряде единиц остается ноль, но единица появляется в разряде десятков: 9 + 1 = 10. Так и в двоичном коде пишут: 1 + 1 = 10. Тройка тут обозначится как 10 + 1 = 11. При прибавлении очередной единицы места, очевидно, не хватит уже не только в разряде единиц;, но и в разряде десятков, и мы вынуждены будем записать там нули, но ввести разряд сотен, что опять же можно сравнить с десятичной системой: 99 + 1 = 100. Пять соответственно обозначится как 101, шесть как 110, семь как 111, а восемь как 1000.
Читать дальше