1 ...8 9 10 12 13 14 ...50 Во всех типах бета-распада (кроме предсказанного, но пока не открытого безнейтринного) ядром испускается нейтрино или антинейтрино.
Альфа-распад
Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
Альфа-распад, как правило, происходит в тяжелых ядрах с массовым числом А ≥ 140 (хотя есть несколько исключений). Внутри тяжелых ядер за счет свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его и вылететь наружу.
В результате α-распада атом смещается на две клетки к началу таблицы Менделеева (то есть заряд ядра Z уменьшается на два), массовое число дочернего ядра уменьшается на четыре.
Какие внешние силы способствуют распаду протонов ядра?
Бета-распад
Бета-минус-распад – это радиоактивный распад, сопровождающийся испусканием из ядра электрона и электронного антинейтрино.
Бета-распад является внутринуклонным процессом.
Происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:
нейтрон = протон + электрон + антинейтрино
После β–распада элемент смещается на одну клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.
Существуют также другие типы бета-распада.
В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и электронное нейтрино.
При β+-распаде заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева).
протон = нейтрон + позитрон + нейтрино
Позитронный распад всегда сопровождается конкурирующим процессом – электронным захватом; в этом процессе ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу.
После захвата электрона образовавшаяся вакансия в электронной оболочке заполняется путем перехода электрона из более высокой оболочки, этот процесс может быть каскадным (после перехода вакансия не исчезает, а смещается на более высокую оболочку), а энергия уносится посредством рентгеновских фотонов и/или оже-электронов с дискретным энергетическим спектром.
После позитронного распада и электронного захвата элемент смещается на одну клетку к началу таблицы Менделеева (заряд ядра уменьшается на единицу), тогда как массовое число ядра при этом не меняется.
Наиболее редким из всех известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для одиннадцати нуклидов, и период полураспада для любого из них превышает 1019 лет. Двойной бета-распад в зависимости от нуклида может происходить:
– с повышением заряда ядра на два (при этом испускаются два электрона и два антинейтрино, 2β–распад);
– с понижением заряда ядра на два, при этом испускаются два нейтрино и два позитрона (двухпозитронный распад, 2β+-распад);
– испускание одного позитрона сопровождается захватом электрона из оболочки (электрон-позитронная конверсия, или εβ+-распад);
– захватываются два электрона (двойной электронный захват, 2ε-захват).
Все типы бета-распада сохраняют массовое число ядра, поскольку при любом бета-распаде общее количество нуклонов в ядре не изменяется, лишь один или два нейтрона превращаются в протоны (или наоборот).
Гамма-распад (изомерный переход)
Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбужденных состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбужденные состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбужденных состояний имеют очень малые времена Жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена Жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.
Читать дальше