В процессе уроков я был свидетелем поразительной метаморфозы. Вежливый, добрый пожилой джентльмен, которого я знал с детства, человек, которого легко принять за отставного клерка, у меня на глазах превращался в человека, озаренного беспощадным светом разума и ведомого внутренней силой непостижимой глубины. Я раньше видел отдельные проблески черт этой человеческой породы – когда говорил на математические темы со своим давним соседом по комнате Сэмми Эпштейном и даже у самого дяди Петроса за шахматной доской. Но, слушая, как он разворачивает передо мной тайны теории чисел, я первый и единственный раз в жизни увидел это по-настоящему. Чтобы это почувствовать, не надо знать математику. Искры в его глазах, неназываемая мощь, которую излучало все его существо, были достаточным свидетельством. Он был абсолютным, чистокровным, неподдельным гением.
Неожиданным положительным побочным эффектом было то, что последние тени сомнения (очевидно, они дремали во мне все эти годы) насчет моего решения оставить математику развеялись без следа. Следить, как работает мой дядя, – этого было достаточно, чтобы подтвердить правильность такого выбора. Я не был сделан из того же теста, что и он, – это стало ясно без малейших сомнений. Видя лицом к лицу воплощение того, чем я не был, я наконец понял истинность изречения «Mathematicus nascitur non fit». Истинными математиками рождаются, а не становятся. Я не родился математиком, и потому хорошо, что я эту науку оставил.
Конкретное содержание этих десяти уроков не входит в предмет нашего рассказа, и я даже пытаться не буду его передать. Значение имеет лишь то, что за восемь первых уроков мы прошли начальный период работы дяди над Проблемой Гольдбаха, завершившийся блестящей теоремой Папахристоса о разложении, которая теперь носит имя австрийского математика, переоткрывшего ее, а также другим дядиным главным результатом, принадлежащим теперь Рамануджану, Харди и Литлвуду. На девятом уроке он объяснил мне то, что я мог понять из обоснования его решения сменить подход с аналитического на алгебраический. К следующему уроку он попросил меня принести два кило бобов лимской фасоли. На самом деле он вначале попросил принести фасоли обыкновенной, но потом поправился, застенчиво улыбнувшись:
– Путь будет лимская фасоль, ее мне будет лучше видно. Увы, любимейший из племянников, я не молодею.
Когда я приехал в Экали на десятый урок (который оказался последним, хотя я тогда еще этого не знал), мною владело нетерпеливое ожидание: из его рассказа я знал, что он бросил свою работу именно тогда, когда занимался «знаменитым методом бобов». Очень скоро, быть может, на этом неминуемом уроке, мы дойдем до критического момента, когда он услышал о теореме Гёделя и оставил попытки решить проблему Гольдбаха. И тут-то я и начну атаку на его бережно скрываемую защиту, выставлю его рассуждения о недоказуемости тем, чем они и являются: простым оправданием.
Я приехал, и дядя, ни слова не говоря, провел меня в свою так называемую гостиную, которую я не узнал. Всю мебель он сдвинул к стенам, даже кресло и шахматный столик, навалил штабеля книг вдоль стен еще выше, освободив посередине широкое пустое пространство. Опять-таки ни слова не сказав, он взял у меня из рук мешок с бобами и начал раскладывать их на полу прямоугольниками. Я молча смотрел.
Закончив, он сказал:
– На предыдущих уроках мы изучили мой ранний подход к Проблеме. Это была хорошая, пусть даже превосходная математика, но математика довольно традиционного вида. Теоремы, которые я доказал, были трудны и важны, но они развивали пути, начатые другими, а не мной. Но сегодня я представлю тебе свою самую важную и оригинальную работу, мой прорыв. Открыв геометрический подход, я вторгся наконец на девственную, неисследованную территорию.
– Тем более жаль, что ты ее оставил, – сказал я, подготавливая почву для начала конфронтации.
Он не обратил внимания.
– Основной тезис, лежащий в основе геометрического подхода, состоит в том, что умножение – операция не естественная.
– Что ты имеешь в виду под словом «не естественная»? – спросил я.
– Леопольд Кронекер когда-то сказал: «Всеблагой Господь создал натуральные числа, все остальное – работа человека». Так вот, как он создал натуральные числа – думаю, Кронекер забыл это добавить, – он создал и сложение с вычитанием, или дать и взять. Я рассмеялся:
– Дядя, мы будем заниматься математикой или теологией?
Читать дальше