Душевный мир, которого он достиг в Инсбруке, принес Петросу фундаментальное озарение: дефект его подхода состоял в том, что он принял на вооружение аналитический метод. Он понял, что его увлек в сторону успех Адамара и Валле-Пуссена, доказавших теорему о распределении простых чисел, а также – и в особенности – авторитет Харди. Иными словами, ему затуманили зрение требования математической моды (да-да, такая вещь существует!), требования, не в большей степени имеющие право считаться Математической Истиной, чем ежегодные капризы гуру от кутюр – Платоновым Идеалом Красоты. Теоремы, обоснованные строгими доказательствами, являются, конечно, абсолютными и вечными, но методы, которыми их доказывают, – определенно нет. Выбор методов по определению конъюнктурен – вот почему они так часто меняются.
Мощная интуиция Петроса говорила ему теперь, что аналитический метод себя исчерпал. Настало время для чего-то нового, или, точнее говоря, чего-то старого, возвращения к древнему и проверенному временем подходу к тайнам чисел. На его плечи, решил он, легло тяжкое бремя заново определить направление развития теории чисел на будущее: решение проблемы Гольдбаха, полученное элементарной, алгебраической техникой, решит вопрос раз и навсегда.
А что касается его первых результатов – теоремы о разложении и второго результата, – их можно теперь без риска отдать математической общественности. Поскольку они получены аналитическим методом (который более не казался полезным для решения Проблемы), их публикация не грозит тем, что кто-то опередит его в получении главного результата.
Когда Петрос вернулся в Мюнхен, домоправительница обрадовалась, увидев герра профессора в столь цветущем виде. Она его даже с трудом узнала; как она сказала, «он просто помолодел, просто сиял здоровьем».
Была середина лета, и Петрос, не обремененный академическими нагрузками, начал составлять монографию о своих двух теоремах с доказательствами. Пожиная плоды десятилетних усердных трудов на ниве аналитического метода, видя их в конкретной форме, с началом, серединой и концом, полностью и четко представленными и изложенными, Петрос был вполне доволен. Он понимал, что, хотя и не решил пока Проблему, сделал в математике выдающуюся работу. Не приходилось сомневаться, что публикация двух его теорем принесет ему первые серьезные научные лавры. (Выше уже было сказано, что он сбрасывал со счетов прикладной результат «метода Папахристоса решения дифференциальных уравнений».) Он мог теперь даже позволить себе помечтать о том, что его ждет. Он уже видел восторженные письма коллег, поздравления на факультете, приглашения прочитать лекции о своих результатах в главных университетах мира. Он даже видел получение международных наград и премий. А почему бы и нет? Его теоремы этого заслуживают.
С началом учебного года (продолжая работать над монографией) Петрос возобновил преподавательскую деятельность и был удивлен, что чтение лекций приносит ему удовольствие. Усилия, требуемые для изложения и объяснения материала в понятном студентам виде, увеличивали радость от понимания того, что он излагает. Декан факультета тоже был доволен – не только повышением качества лекций, о котором сообщали и ассистенты, и студенты, но главным образом информацией о том, что профессор Папахристос готовит к печати монографию. Два года в Инсбруке помогли. Пусть даже готовящаяся работа не содержит решения проблемы Гольдбаха, уже поговаривали, что там есть крайне важные результаты.
Монография была закончена сразу после Рождества, и в ней оказалось около двухсот страниц.
Она была озаглавлена с чуть лицемерной скромностью, с которой многие математики публикуют важные результаты: «Некоторые замечания о проблеме разложений». Петрос отдал ее перепечатать и направил экземпляр Харди и Литлвуду, прося их просмотреть работу и сообщить, не упустил ли он какой-либо логической ловушки и не допустил ли скрытой ошибки. На самом деле он отлично знал, что ни ловушек, ни ошибок там нет: он просто тешил себя мыслью об изумлении и восхищении, которое охватит этих двух столпов теории чисел. Фактически он уже грелся в лучах их похвал.
Отослав рукопись, Петрос решил, что может позволить себе каникулы перед тем, как снова полностью отдаться Проблеме. Следующие несколько дней были всецело посвящены шахматам.
Он вступил в лучший шахматный клуб города, где обнаружил, к своему удивлению, что способен обыграть любого, кроме самых-самых лучших, и очень нелегко выбрать тех, кого он не может запросто победить. Он обнаружил еще и книжную лавочку, принадлежащую шахматному энтузиасту, где покупал тяжелые тома по теории дебютов и сборники партий. Купленную в Инсбруке шахматную доску он установил на столике перед камином, рядом с удобным глубоким креслом, оббитым мягким бархатом. Там и происходили его ночные встречи с новыми черно-белыми друзьями.
Читать дальше