Шон Кэрролл - Вечность. В поисках окончательной теории времени

Здесь есть возможность читать онлайн «Шон Кэрролл - Вечность. В поисках окончательной теории времени» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 101, Издательство: ООО «ЛитРес», www.litres.ru, Жанр: Современная проза, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вечность. В поисках окончательной теории времени: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вечность. В поисках окончательной теории времени»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вечность. В поисках окончательной теории времени — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вечность. В поисках окончательной теории времени», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, – в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.

Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.

Реальные же законы физики на фундаментальном уровне обратимы. И если вдуматься, это их свойство гарантирует, что высокоэнтропийные состояния не будут стремиться переходить в состояния с низкой энтропией. Как вы помните, основа обратимости – сохранение информации. Информация, необходимая для описания конкретного состояния, сохраняется, несмотря на то что система движется, меняясь с течением времени. Это означает, что два разных состояния с течением времени всегда переходят в два разных состояния; если бы в будущем они приходили в какое-то одно состояние, то мы не могли бы восстановить прошлое этого состояния. Поэтому совершенно невозможно, чтобы все высокоэнтропийные состояния стремились в низкоэнтропийные: состояний с низкой энтропией просто-напросто слишком мало, для того чтобы это было реально. Данный результат называется теоремой Лиувилля в честь французского математика Жозефа Лиувилля.

Это почти то, что нам нужно, но не совсем. И, как это часто случается, мы хотим того, что вряд ли сможем в действительности получить. Предположим, что у нас есть какая-то система, мы знаем, в каком макросостоянии она находится, и хотели бы сделать какие-то предсказания относительно ее будущего. Пусть это будет, например, стакан воды с плавающим в ней кубиком льда. Согласно теореме Лиувилля, большинство микросостояний этого макросостояния будут стремиться к увеличению (либо сохранению) энтропии. То же самое говорит нам второе начало термодинамики: кубик льда, скорее всего, растает. Однако система находится ровно в одном конкретном микросостоянии, даже если мы не знаем точно, в каком. Можем ли мы быть уверены, что это не одно из того крошечного набора микросостояний, в которых энтропия способна в любое мгновение внезапно уменьшиться? Как гарантировать, что кубик льда не увеличится, одновременно нагрев окружающую его воду?

Ответ прост: никак. В макросостоянии «вода с кубиком льда» обязательно присутствует какое-то конкретное, очень редкое микросостояние, которое действительно будет эволюционировать по направлению к микросостоянию с меньшей энтропией. Статистическая механика (основанная на атомах версия термодинамики), по сути, наука вероятностная: нам неизвестно, что в точности произойдет; мы можем лишь утверждать, что вероятность определенных событий наиболее высока. По крайней мере, нам хотелось бы иметь возможность делать такие утверждения. В действительности же мы можем говорить лишь о том, что большинство состояний с небольшой энтропией будут развиваться в сторону увеличения, а не уменьшения энтропии. Вы обратили внимание на тонкое различие между «большинство микросостояний данного макросостояния развиваются в сторону увеличения энтропии» и «принадлежащее данному макросостоянию микросостояние с большой вероятностью будет развиваться в сторону увеличения энтропии»? Первое утверждение – это всего лишь подсчет относительного числа микросостояний, обладающих разными свойствами («кубик льда тает» или «кубик льда растет»), однако во втором мы уже делаем заявление о вероятности какого-то события в реальном мире. Это не одно и то же. В мире больше китайцев, чем литовцев; однако это не означает, что вы с большей вероятностью столкнетесь с китайцем, чем с литовцем, прогуливаясь по улицам Вильнюса.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вечность. В поисках окончательной теории времени»

Представляем Вашему вниманию похожие книги на «Вечность. В поисках окончательной теории времени» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Шон Кэрролл - Вселенная
Шон Кэрролл
Шон Кэрролл - Закон «джунглей»
Шон Кэрролл
Отзывы о книге «Вечность. В поисках окончательной теории времени»

Обсуждение, отзывы о книге «Вечность. В поисках окончательной теории времени» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x