Разрешив основную задачу авиации, Николай Егорович занялся созданием теории и методов расчета воздушных винтов. Созданная им вихревая теория воздушного винта, опубликованная в ряде статей в течение 1912–1918 годов и лежащая в основе расчета самолетных и вертолетных винтов, ветряков, вентиляторов, лопаток турбин и т. д., является одной из наиболее выдающихся работ XX века в области авиации. Вихревая теория Жуковского позволила построить отечественные винты с очень хорошими характеристиками. В честь Николая Егоровича воздушные винты его системы назвали начальными буквами его имени, отчества и фамилии, «НЕЖ».
Работы его по теории воздушных винтов продолжили и дополнили его ученики Б. Н. Юрьев, В. П. Ветчинкин, Г. И. Кузьмин и многие другие.
Замечательные исследования Жуковского в области теории крыла самолета и воздушных винтов появились раньше работ иностранных ученых на ту же тему. В создании теории авиации Россия шла впереди Европы благодаря творческому дару Николая Егоровича и его умению всегда привлечь к работе группу ученых-энтузиастов.
Прежде чем закончить эту главу, в которой рассказано о великом открытии Жуковского, нужно упомянуть еще об одной категории его работ, написанных в разное время и имевших огромное значение для развития нового вида авиации, который в те годы казался почти фантастическим: реактивной авиации.
Как только стали строить самолеты, началась борьба за скорость их полета. Увеличение скорости достигалось совершенствованием внешних форм самолета и непрерывным увеличением мощности двигателя, притом в очень больших размерах. Так, например, чтобы повысить в два раза скорость самолета, нужно увеличить в восемь раз мощность двигателя; это приведет к значительному увеличению веса двигателя. Но значительное увеличение веса двигателя, в свою очередь, конечно, основательно уменьшит скорость. Получался заколдованный круг, выход из которого был найден в применении реактивных двигателей.
Такие двигатели отбрасывают назад струю газа. Это отбрасывание происходит со значительной скоростью, большей, чем скорость движения самолета. Сила отдачи (реакция) отбрасываемого газа и является источником движения самолета.
При помощи реактивных двигателей можно достигнуть скорости, казавшейся еще недавно невероятной: превысить скорость звука, равную у земли 340 метрам в секунду, то есть 1224 километра в час. Современные реактивные самолеты, летя со скоростями, значительно превышающими скорость звука, поднимаются на очень большую высоту.
4 октября 1957 года в Советском Союзе был осуществлен успешный запуск первого в мире искусственного спутника Земли со скоростью около 8000 метров в секунду (примерно 28 800 километров в час). Чтобы достигнуть такого замечательного результата, надо было положить много труда, разрешить ряд сложнейших задач.
Идея реактивного летательного аппарата не нова. В 1849 году русский военный инженер У. И. Третесский создал проект управляемого аэростата (дирижабля), снабженного реактивным двигателем. В 1881 году народоволец Н. И. Кибальчич во время заключения в крепости за несколько дней до казни закончил проект реактивного аппарата тяжелее воздуха, движущегося с помощью пороховых ракет. Особенно много сделал для создания и развития реактивной авиации знаменитый деятель русской науки К. Э. Циолковский.
Жуковский знал, как определить силу реакции жидкости, выталкиваемой из какого-либо сосуда, силу, которая заставляет сосуд двигаться в сторону, противоположную направлению движения выталкиваемой жидкости. Еще в 1882 году в работе «О реакции вытекающей и втекающей жидкости» он предложил формулу, позволяющую вычислить силу тяги, развиваемой реактивным двигателем. В 1904 году, стремясь сконструировать как можно более легкий двигатель, он использовал принцип реакции. Под его руководством был спроектирован винт с реактивными двигателями на концах лопастей. В 1908 году была напечатана работа Николая Егоровича «К теории судов, приводимых в движение силою реакции вытекающей воды».
Весьма интересовал Жуковского вопрос о законах движения твердых тел в воздухе с большими скоростями. Его статьи «О сопротивлении воздуха при больших скоростях», «Движение волны со скоростью, большей скорости звука» и другие, наряду с работами С. А. Чаплыгина, явились основой для создания газовой динамики — науки, позволяющей рассчитать необходимые размеры и формы ракет, скоростных самолетов, реактивных двигателей и скоростных аэродинамических труб.
Читать дальше