Результаты экспериментов, посвященных изучению синаптического возбуждения и торможения у раков, вдохновили Куффлера на исследования более сложных взаимодействий нейронов в сетчатке млекопитающих. Он занялся не только механизмами синаптической передачи, но и механизмами обработки информации в одной из сенсорных систем мозга. Как Куффлер впоследствии говорил, он решил разобраться в том, как работает мозг.
Куффлер, а впоследствии Хьюбел и Визель ( рис. 15–7 ) изучали зрительное восприятие животных. Они понимали, что у разных нейронов могут быть разные функции, механизмы работы и свойства, а значит, чтобы разобраться в работе мозга, нужно разобрать его по клетке. Куффлер, а затем Хьюбел и Визель вводили в сетчатку животных микроэлектроды и регистрировали возникающие в клетках сетчатки электрические импульсы. Электроды были присоединены к осциллографу и репродуктору с усилителем, что позволяло наблюдать потенциалы действия клетки на осциллографе и одновременно слышать их треск. Так исследователи изучали, как клетки разных отделов зрительной системы реагируют на элементарные стимулы и как информация трансформируется на пути от сетчатки через передатчики в направлении высших зрительных зон мозга.
Рис. 15–7. Дэвид Хьюбел (1926–2013) и Торстен Визель (р. 1924; справа).
Куффлер начал с регистрации потенциалов действия, генерируемых отдельными ганглионарными клетками в центре и на периферии сетчатки. Он обнаружил, что эти специализированные нейроны получают от колбочек и палочек информацию о зрительных образах, кодируют ее в виде последовательностей импульсов и передают в мозг. Регистрируя эти импульсы, Куффлер сделал первое неожиданное открытие: ганглионарные клетки сетчатки никогда не спят. Они самопроизвольно генерируют потенциалы действия даже без света или какой-либо другой стимуляции ( рис. 15–8 ). Как в устройстве автоматического пуска, эта медленная самопроизвольная активность создает фон для поиска сигналов извне, так что любые зрительные стимулы не запускают возбуждение нейронов, а лишь меняют его конфигурацию. Возбуждающие стимулы усиливают это возбуждение, а тормозные – ослабляют.
Рис. 15–8. Устройство рецептивного поля ганглионарной клетки с on-центром
Вскоре Куффлер установил, что самый эффективный способ менять конфигурацию самопроизвольного возбуждения ганглионарных клеток – не светить на всю сетчатку сильным рассеянным светом, а освещать одно пятнышко на ее поверхности. Эксперименты подтвердили, что каждый ганглионарный нейрон получает информацию от собственного участка сетчатки – рецептивного поля , на которое проецируется крошечная часть картины. Каждый из этих нейронов реагирует на стимуляцию своего рецептивного поля и передает информацию в мозг только от него. Кроме того, Куффлер обнаружил, что частота возбуждения ганглионарных нейронов зависит от силы света, падающего на рецептивное поле, а продолжительность их возбуждения зависит от продолжительности действия светового стимула. Поскольку вся сетчатка покрыта рецептивными полями ганглионарных клеток, то, на какой бы участок ни падал свет, некоторые из этих клеток будут на него реагировать. Наша зрительная система хорошо приспособлена к восприятию деталей.
Ганглионарные клетки с самыми маленькими рецептивными полями располагаются в центре сетчатки. Они получают информацию от наиболее плотно упакованных колбочек, отвечающих за самое изощренное зрительное восприятие (например, рассматривание деталей картины). Другие ганглионарные клетки, чуть в стороне от центра сетчатки, имеют несколько более широкие рецептивные поля и получают информацию уже от многих колбочек. С этих клеток начинается обработка грубых, цельных компонентов зрительного образа. Куффлер установил, что рецептивные поля ганглионарных клеток сетчатки постепенно увеличиваются в направлении периферии. Поэтому периферические клетки сетчатки не в состоянии обрабатывать информацию о незначительных деталях и дают лишь размытые изображения.
Методично обследуя сетчатку с помощью луча света, направляемого на рецептивные поля разных ганглионарных клеток, Куффлер сделал третье открытие. Он нашел, что ганглионарные клетки сетчатки бывают двух типов, поровну распределенных в ней и отличающихся характером реакции клеток на стимуляцию центральной и периферической частей рецептивного поля. Клетки с on- центром возбуждаются, когда крошечное пятнышко света падает в самый центр их рецептивного поля, но их возбуждение ослабевает, когда свет падает на его периферию. Клетки с off- центром , напротив, возбуждаются, когда свет падает на периферию рецептивного поля. Их возбуждение тормозится, когда свет падает в его центр ( рис. 15–9 ).
Читать дальше
Конец ознакомительного отрывка
Купить книгу