Не будет преувеличением сказать, что инвестиции в разработку программного обеспечения обычно входят в число самых рискованных проектов вложения средств, которые реализуют компании. Например, вероятность того, что крупный проект такого рода будет заморожен, прямо пропорциональна продолжительности его осуществления. В 1990-х годах закончились ничем около четверти всех существовавших более двух лет проектов разработки программного обеспечения (для сравнения: показатель невыполнения обязательств по мусорным облигациям был ниже 25 %).
Тем не менее большинство организаций, применяющих анализ ROI, не принимают во внимание такие риски. Типичные пороговые ставки не корректируются на разные риски, связанные с ИТ-проектами, хотя именно риски должны в основном учитываться при принятии подобных решений. Если бы руководители компаний анализировали инвестиции в разработку программного обеспечения с точки зрения соотношения «риск/доходность», то наверняка принимали бы решения более обоснованные, чем сделанные только на основе фиксированных пороговых ставок.
Количественное определение субъективных компромиссов: решение проблемы нескольких взаимоисключающих предпочтений
Кривая инвестиционной границы — пример тех кривых полезности, с которыми будущие менеджеры компаний знакомятся на первом курсе университета. К сожалению, большинство из них, по-видимому, считают полученные знания чисто теоретическими и не имеющими никакого практического значения. Но кривые полезности — идеальный инструмент, позволяющий определять, какой частью одного стоит пожертвовать ради получения другого. Разнообразные виды кривых полезности помогают тем, кто принимает решения, детально выяснять, какой компромисс для них приемлем.
Один из самых распространенных компромиссов, которые приходится делать менеджеру, — это выбор между эффективностью и качеством. Он очень полезен при попытках оценить предпочтения и стоимость. Термины «эффективность» и «качество» толкуются настолько по-разному, что с уверенностью о них можно сказать только одно: высокая эффективность и высокое качество лучше, чем низкая эффективность и низкое качество. Но, как мы уже говорили, причин для такой неоднозначной трактовки не существует, и объяснить содержание этих слов так же легко, как и любых других «нематериальных» понятий.
Когда клиенты просят меня помочь им оценить эффективность, я всегда спрашиваю их: «А что вы подразумеваете под эффективностью?» В ответ они, как правило, предоставляют мне перечень разрозненных наблюдений, которые ассоциируются у них с эффективностью, например: «Этот человек всегда все делает вовремя» или «О ней заказчики всегда отзываются положительно». Могут упоминаться и такие факторы, как небольшое число допускаемых ошибок или высокая производительность труда, например: «За три месяца этот сотрудник сумел собрать целых три модуля без брака». Иными словами, проблема в том, что никто не представляет, как наблюдать эффективность. Один мой клиент высказался: «Я знаю, что должен искать, но как мне суммировать все это? Могу ли я считать, что тот, кто делает всю работу вовремя и почти без ошибок, работает эффективнее того, кто постоянно получает больше положительных отзывов клиентов?»
На самом деле это не проблема измерения, а вопрос документального оформления субъективных компромиссов. Это проблема отражения множества разнородных наблюдений в едином «индексе». И здесь, чтобы такое обобщение оказалось логичным, мы можем воспользоваться кривыми полезности. С их помощью достаточно просто показать, как сформулировать компромиссы по аналогии со следующими примерами:
• Кто работает эффективнее: программист, который 99 % заданий выполняет вовремя и в 95 % случаев безошибочно, или тот, кто только 92 % заданий выполняет вовремя, но в 99 % случаев безошибочно?
• Стало ли качество товара выше, если процент брака снизился на 15 %, а возврат товара покупателями увеличился на 10 %?
• Стала ли «стратегическая согласованность» полнее, если прибыль повысилась на 10 %, но «общий показатель качества» упал на 5 %?
Для каждого из этих случаев можно составить график, отражающий все возможные компромиссы, по аналогии с определением желаемого соотношения «риск/доходность». Точки на кривой представляют комбинации, одинаково ценные для лица, принимающего решение. В предыдущем примере с инвестиционной границей каждая точка на кривой имела нулевое значение и представляла такое сочетание риска и доходности, что тому, кто принимал решения, было безразлично, принять или отвергнуть данный инвестиционный проект (так как при данной доходности риск был не ниже самого высокого из приемлемых).
Читать дальше