Вот вам и урок для бизнеса: Эратосфен произвел измерения, казавшиеся невозможными, остроумно использовав данные простейших наблюдений. Когда я спрашиваю слушателей своих семинаров по оценке и анализу риска, как они определили бы длину земной окружности, не пользуясь современными инструментами, они обычно предлагают какой-нибудь сложный путь, например кругосветное плавание. Но ведь Эратосфен выполнил свои расчеты, не покидая окрестностей библиотеки. На поставленный им вопрос могли ответить гораздо более сложные исследования, но его оценка основывалась на других, простых наблюдениях. Ученый извлек всю возможную информацию из тех немногих фактов, которые мог проверить сам, не «зацикливаясь» на том, что эта задача решается только сложным путем.
Как определить неизвестную: берите пример с Ферми
Другой не имеющий отношения к бизнесу человек, способный вдохновить предпринимателей на измерения, — это Энрико Ферми (1901–1954), физик, получивший Нобелевскую премию в 1938 г. У него был настоящий талант к интуитивным измерениям, иногда казавшимся даже случайными. Как-то он продемонстрировал его при испытании атомной бомбы на полигоне Тринити 16 июля 1945 г., где вместе с другими учеными-атомщиками наблюдал за взрывной волной из базового лагеря. Пока другие окончательно настраивали приборы для измерения мощности взрыва, Ферми разорвал на мелкие кусочки страничку из своего блокнота. Когда после взрыва подул сильный ветер, он подбросил эти кусочки в воздух и заметил, куда они упали (обрывки, улетевшие дальше всех, должны были показать пик давления волны). Ферми пришел к выводу, что мощность взрывной волны превысила 10 килотонн. И эта информация оказалась очень важной, так как другим наблюдателям нижний предел данного параметра был неизвестен. После длительного анализа показаний приборов мощность взрывной волны была в конце концов оценена в 18,6 килотонн. Как и Эратосфен, Ферми сумел определить требуемый показатель, проведя одно простое наблюдение — за рассеиванием обрывков бумаги по ветру.
О важности быстрых оценок Ферми знал на протяжении всей своей карьеры. Он славился тем, что учил студентов навыкам приблизительных расчетов самых фантастических величин, о которых те, казалось бы, не могли иметь никакого представления. Самым известным примером такого «вопроса Ферми» является определение числа настройщиков пианино в Чикаго. Студенты (будущие ученые и инженеры) начали с того, что у них нет для этого расчета никаких данных. Конечно, можно было просто пересчитать всех настройщиков, прочитав объявления, справившись в каком-нибудь агентстве, выдающем лицензии на такие услуги, и т. д. Но Ферми пытался научить своих студентов решать задачи и тогда, когда проверить результат будет не так просто. Ему хотелось, чтобы они поняли, что все-таки знают что-то об искомой величине.
Для начала Ферми попросил определить другие имеющие отношение к пианино и их настройщикам показатели — тоже неизвестные, но более легкие для оценки. Это были численность населения Чикаго (составлявшая в 1930–1950-х годах чуть более 3 млн человек), среднее число человек в одной семье (два или три), процент семей, регулярно пользующихся услугами настройщиков пианино (максимально — каждая десятая, минимально — каждая тридцатая семья), требуемая частота настройки (в среднем, вероятно, не менее раза в год), число пианино, настраиваемых настройщиком за день (четыре или пять инструментов с учетом затрат времени на дорогу), а также число рабочих дней настройщика в году (скажем, 250). Эти данные позволили рассчитать число настройщиков по следующей формуле:
Число настройщиков пианино в Чикаго = (Численность населения / Число членов одной семьи) × Процент семей, пользующихся услугами настройщиков × Число настроек в году / (Число пианино, настраиваемых одним настройщиком за день × Число рабочих дней в году).
В зависимости от цифр, подставляемых в это уравнение, вы получите ответ в интервале 20–200, скорее всего, правильный ответ составлял примерно 50 человек. Когда эту цифру сравнивали с реальной (которую Ферми мог узнать из телефонного справочника), она всегда была ближе к реальной, чем думали студенты. Полученный интервал значений выглядит слишком широким, но разве это не огромный шаг вперед по сравнению с позицией «неужели это вообще можно определить?», которую студенты занимали поначалу?
Данный подход позволял людям, производившим расчеты, понять, откуда берется неопределенность. Какие переменные характеризовались наибольшей неопределенностью — процент семей, регулярно пользующихся услугами настройщиков пианино, частота настроек, число инструментов, которые можно настроить за день, или что-то еще? Самый крупный источник неопределенности указывал на то, какие измерения позволят максимально снизить ее.
Читать дальше