ЗАБЛУЖДЕНИЕ МАКНАМАРЫ
Первый уровень — мерить все, что легко поддается измерению. Этот подход не вызывает возражений. Второй — отбросить то, что трудно измеряется, или приписать ему произвольное количественное значение — искусственный, уводящий в сторону путь. Третий уровень — предположить, что все трудноизмеримое не имеет значения. Это страусиная политика. Четвертый этап — сказать, что измеряемое с трудом вообще не существует. Это самоубийство.
Чарлз Хэнди
[23] Английский теоретик менеджмента (род. в 1932 г.). — Примеч. переводчика.
, «The Empty Raincoat» («Пустой плащ»), 1995, с. 219.
На самом деле существуют всего три главные причины тому, что информация имеет свою стоимость для бизнеса.
1. Информация снижает неопределенность в связи с решениями, имеющими экономические последствия.
2. Она влияет на поведение людей, и это также имеет экономические последствия.
3. Иногда информация сама обладает собственной рыночной стоимостью.
Объяснение первой причины из трех перечисленных выше было известно с 1950-х годов. Оно было обосновано в математической теории принятия решений — разделе теории игр. Именно сокращению неопределенности мы и уделим основное внимание, главным образом потому, что оно наиболее актуально для обычных условий, и потому, что две другие причины несколько проще. Ведь стоимость информации, влияющей на поведение людей, просто равна стоимости разницы в их поведении. Если измерение результатов деятельности дает рост производительности труда 20 %, то денежное выражение роста производительности и есть стоимость измерения. А если стоимость информации является ее рыночной стоимостью, то перед нами проблема рыночного прогноза, ничем не отличающаяся от оценки продаж любого другого продукта. Если мы собираем информацию об интенсивности движения на городских перекрестках в разное время дня, чтобы продать ее компаниям, ищущим подходящие места для размещения розничных магазинов, то стоимость таких измерений равняется ожидаемой прибыли от продажи этих данных. Однако чаще всего в бизнесе производят измерения потому, что они хотя бы частично связаны с принятием решений. Об этом и пойдет речь в данной главе.
Вероятность ошибиться и цена ошибки: ожидаемые потери от упущенных возможностей
Более 50 лет назад в теории игр — области, понятной лишь посвященным, — была разработана такая формула стоимости информации, которую можно не только вывести математически, но и уяснить интуитивно. Снижение неопределенности (то есть проведение измерений) позволяет делать более удачные ставки (то есть принимать более обоснованные решения). Знать стоимость измерений необходимо, чтобы определить, как можно измерить что-либо и следует ли этим заниматься вообще.
Неуверенность в деловом решении (а калиброванный эксперт должен реалистично оценивать уровень неопределенности) означает, что у вас есть шанс ошибиться. Под ошибкой я понимаю следующее: последствия альтернативного решения могут оказаться предпочтительнее, и, зная об этом, вы, несомненно, выбрали бы его. Цена ошибки — это разница между сделанным вами неправильным выбором и лучшей из имевшихся альтернатив, то есть той, на которой вы остановились бы, обладая полной информацией по вопросу. Например, собираясь вложить деньги в новую смелую рекламную кампанию, вы надеетесь, что эти инвестиции окупятся. Но полностью уверенным в успехе мероприятия вы быть не можете. Известно, что в прошлом многие на первый взгляд прекрасно задуманные и обоснованные рекламные акции не оправдали возлагавшихся на них больших надежд. Некоторые из них даже сыграли на руку конкурентам. В то же время правильно спланированные кампании приводят к значительному росту доходов. Нельзя же сидеть сложа руки и не вкладывать деньги в собственную фирму только потому, что есть вероятность ошибиться. Итак, учитывая всю имеющуюся на данный момент информацию, вы решаете провести свою кампанию, но, возможно, имеет смысл прежде кое-что подсчитать.
Чтобы определить стоимость измерения вероятности успеха намеченных действий, вы должны знать, какие убытки понесете, если инвестиции в кампанию окажутся неудачными, а также какова вероятность провала. Будь эта вероятность полностью исключена, снижать неопределенность вообще не потребовалось бы — ваше решение очевидное и безрисковое.
Чтобы не усложнять наш пример, рассмотрим бинарную ситуацию: вы либо преуспеете, либо провалитесь — вариантов больше нет. Предположим, что вы заработаете 40 млн дол., если реклама сработает, и потеряете 5 млн дол. (затраты на проведение кампании) в другом случае. Допустим также, что ваши калиброванные эксперты говорят, что существует вероятность провала рекламы 40 %. Обладая этой информацией, вы можете составить таблицу 7.1.
Читать дальше