Михаил Бармин - Общая и Неорганическая химия с примерами решения задач

Здесь есть возможность читать онлайн «Михаил Бармин - Общая и Неорганическая химия с примерами решения задач» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Издательство: Литагент Selfpub.ru (искл), Жанр: beginning_authors, Химия, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Общая и Неорганическая химия с примерами решения задач: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Общая и Неорганическая химия с примерами решения задач»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания. Супер полезно для студентов России, Белоруссии, Украины и всех знающих русский язык, более того полезно для студентов всех форм и типов образования не химических вузов. Будем рады предложениям и замечаниям.

Общая и Неорганическая химия с примерами решения задач — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Общая и Неорганическая химия с примерами решения задач», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

пульс – количество движения.

1924 г. Луи де Бройль (Франция)– автор гипотезы о волновых свойствах материи, которая легла в основу квантовой механики, предположил, что корпускулярно-волновая двойственность присуща не только фотонам, но и электронам:

λ = h/mv – уравнение де Бройля.

Экспериментально в 1927 г. К.Д.Девиссоном и Л.Х.Джермером в США, Дж.П.Томсоном в Англии и П.С.Тарковским в СССР

независимо друг от друга установлено, что при взаимодействии пучка электронов с дифракционной решеткой (кристаллы металлов) наблюдается дифракционная картина. Электрон вы-ступал как волна длина которой совпадала с вычисленной по уравнению де Бройля.

1925 г. Эрвин Шредингер (Австрия) ПРЕДПОЛОЖИЛ, ЧТО СОСТОЯНИЕ движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в него уравнение связывающее энергию электрона с пространственными координатами и так называемой ВОЛНОВОЙ ФУНКЦИЕЙ ψ соответствующей амплитуде трехмерного волнового процесса. ψ – может принимать как (+) так и (–) значения, ψ2 – всегда (+).

Чем больше значение ψ2 в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т.е. что его существование будет обнаружено в каком–либо физическом процессе, т.е. ВЕРОЯТНОСТЬ ОБНАРУЖЕНИЯ ЭЛЕКТРОНА В НЕКОТОРОМ МАЛОМ ОБЪЕМЕ V выражается ψ2 V. ψ2 – плотность вероятности нахождения электрона в соответствующей области пространства – ОРБИТАЛЬ.

Электронное облако атома водорода. Схематическое изображение электрона, «размазанного» по всему объему атома так называемого электронного облака.

ПЛОТНОСТЬ ЭЛЕКТРОННОГО ОБЛАКА ПРОПОРЦИОНАЛЬНА КВАДРАТУ ВОЛНОВОЙ ФУНКЦИИ - фото 11

ПЛОТНОСТЬ ЭЛЕКТРОННОГО

ОБЛАКА ПРОПОРЦИОНАЛЬНА

КВАДРАТУ ВОЛНОВОЙ ФУНКЦИИ.

ЭНЕРГЕТИЧЕСКОЕ СОСТОЯНИЕ

ЭЛЕКТРОНА В АТОМЕ

Для электрона, находящегося под действием сил притяжения к ЯДРУ, уравнение ШРЕДИНГЕРА имеет решения не прилюбых, а только определенных значениях энергии. Поэтому квантованность энергетических состояний электрона в атоме (т.е. первый постулат Бора) оказывается следствием присущих электрону волновых свойств и не требует особых постулатов.

Рассматривая как модель одномерный атом со стоячими волнами де Бройля найдем Е=mv2/2= h2n2/8ml2 и стоячая волна λ=2l/m λ=h/mv → V=hn/2ml

ДОПУСТИМЫЕ УРОВНИ ЭНЕРГИИ ЭЛЕКТРОНА ОПРЕДЕЛЯЮТСЯ ЗНАЧЕНИЕМ ЦЕЛОГО ЧИСЛА n, ПОЛУЧИВШЕГО НАЗВАНИЕ ГЛАВНОГО КВАНТОВОГО ЧИСЛА (N (n) = 1 – ∞, в пределах таблицы = 7).

Решение уравнения Шредингера для реального атома также приводит к выводу о квантованности энергетических состояний электрона в атоме. Становится ясным и вопрос о состоянии электрона при переходе из одного стационарного состояния в другое (второй постулат). При переходе из одного стационарного состояния в другое (во время перехода) длина волны будет иметь переменное значение, не отвечающее условию образования стоячей волны (неустойчивое состояние) и оно будет меняться до устойчивого состояния (стоячая волна), т.е. электрон окажется в новом состоянии.

В однородной модели атома положение электрона относительно ядра определяется одной координатой, а его состояние – значением главного квантового числа; в двухмерной – двумя – числами; в трехмерный –тремя квантовыми числами. В реальных атомах электрон обладает еще одной квантованной физической характеристикой – СПИНОМ.

Таким образом, для описания состояния электрон в реальном атоме необходимо указать значения 4-х квантовых чисел.

Энергия электрона может принимать только определенные значения – квантована. Энергия реального атома тоже.

N(n) – главное квантовое число – определяет возможные энергетические состояния электрона в атоме. Принимает зна-чения 1, 2, 3, … 7, ∞. Состояние электрона характеризующееся определенным значением N – энергетический уровень (номер периода).

N– определяет и размеры электронного облака. Большим размерам электронного облака соответствует более высокая энергия электрона в атоме и большее значение n. Электроны характеризующиеся одним и тем же значением n, образуют в

атоме электронного облака приблизительно одинаковых размеров; поэтому можно говорить о существовании ЭЛЕКТРОННЫХ СЛОЕВ ИЛИ ЭЛЕКТРОННЫХ ОБОЛОЧЕК

l ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО ПОБОЧНОЕ АЗИМУТАЛЬНОЕ ФОРМА ЭЛЕКТРОННОГО - фото 12 l ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО ПОБОЧНОЕ АЗИМУТАЛЬНОЕ ФОРМА ЭЛЕКТРОННОГО - фото 13

l – ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО (ПОБОЧНОЕ, АЗИМУТАЛЬНОЕ) ФОРМА ЭЛЕКТРОННОГО облака определяется l. l – квантовано и имеет целочисленное значение от 0 до n– 1. Физический смысл l – определяет значение орбитального момента количества движения электрона:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Общая и Неорганическая химия с примерами решения задач»

Представляем Вашему вниманию похожие книги на «Общая и Неорганическая химия с примерами решения задач» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Общая и Неорганическая химия с примерами решения задач»

Обсуждение, отзывы о книге «Общая и Неорганическая химия с примерами решения задач» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x