Такая ядерная модель атома оказалась в противоречии с за-конами классической механики и электродинамики, поскольку система неподвижных зарядов не может находиться в устойчивом состоянии. Резерфорду пришлось отказаться от статической мо-дели атома и предположить, что электроны движутся вокруг ядра по искривленным траекториям. Но в этом случае электрон будет двигаться с ускорением, в связи с чем, согласно классической электродинамике, он должен непрерывно излучать электромагнитные (световые) волны. Процесс излучения сопровождается потерей энергии, так что электрон должен в конечном итоге упасть на ядро («смерть» электрона).
Выход из создавшегося положения был найден датским физиком Нильсом Бором в 1913 году путем введения предположений, противоречащих классическим представлениям. Он высказал два постулата:
Из бесконечного множества электронных орбит, возможных
точки зрения классической механики, осуществляется в действительности только некоторые дискретные орбиты. удовлетво-ряющие определенным квантовым условиям. Электрон, находящийся на одной из этих орбит, несмотря на то, что он движется с ускорением, не излучает электромагнитных волн.
2. Излучение испускается или поглощается в виде светового кванта энергии hv при переходе из одного стационарного состояния в другое. Величина светового кванта равна разности энергий тех стационарных состояний, между которыми совершаются квантовый скачок энергии электрона
hv = Ек – Еm
К этим двум постулатам Бор добавил квантовое условие:
J = m Vk rk = kh/2 ,
где Vr – скорость электрона на k-ой орбите, J – момент количества движения электрона, rk – радиус орбиты.
Эту планетарную модель Бора нельзя, конечно, считать серьезной теорией. Однако она хорошо согласуется с опытными данными для атома водорода, т.к. дала количественное объяснение спектра атома водорода, и это было большим успехом новых идей.
Существование дискретных энергетических уровней атома подтвердили опыты Герца в 1914 году.
Теория Нильса Бора позволяет вычислить возможные частоты излучения, способного испускаться или поглощаться атомом, т. е. рассчитывать спектр атома водорода.
ПОСТУЛАТЫ БОРА противоречат положениям классической механики и электродинамики. Электрон может вращаться по любым орбитам и должен излучать при движении по круговой орбите.
Расчет спектра простейшего атома – атома водорода, выполненный Бором, дал блестящие результаты: вычисленное положение спектральных линий в видимой части спектра превосходно совпало с их действительным местоположением в спектре. При этом оказалось, что эти линии соответствуют переходу электрона с более удаленных орбит на вторую от ядра орбиту.
На основе своей теории БОР предсказал существование и местоположение НЕИЗВЕСТНЫХ в то время спектральных серий водорода, находящихся в ультрафиолетовой и инфра-красной областях спектра и связанных с переходом электрона на ближайшую к ядру орбиту и на орбиты более удаленные от ядра, чем вторая.
Все эти серии были ЭКСПЕРИМЕНТАЛЬНО обнаружены.
ПРОТИВОРЕЧИЯ:
Противоречия законам механики и электродинамики и в то же время использование их для расчета сил, действующих на электрон.
ГДЕ НАХОДИТСЯ ЭЛЕКТРОН В ПРОЦЕССЕ ПЕРЕХО-
ДА С ОДНОЙ ОРБИТЫ НА ДРУГУЮ?
3.ТАКИЕ (1 → 2) ПРОМЕЖУТОЧНЫЕ СОСТОЯНИЯ ЗАПРЕЩАЮТСЯ ТЕОРИЕЙ, поскольку постулируется возможность пребывания электрона только на стационарных орбитах.
4. Не получено объяснений по поводу линейчатости и различий интенсивности линий в атомном спектре водорода.
Значение теории Бора
1. Нельзя переносить автоматически законы природы, справедливые для больших тел – объектов МАКРОМИРА, на ничтожно малые объекты МИКРОМИРА – атомы, электроны, фотоны.
ТЕОРИЯ ДОЖНА РАБОТАТЬ КАК ДЛЯ МАКРО ТАК И ДЛЯ МИКРООБЬЕКТОВ (принцип соответствия Н.Бора).
Эта задача была решена в 20-х годах ХХ в. – квантовой или волновой механикой.
Создание квантовой механики произошло на пути обобщения представления о корпускулярно-волновой двойственности фотона на все объекты микромира, и, прежде всего, на электроны.
Корпускулярные свойства фотона: Е=hv. Фотон – дискретное образование, имеющее волновые свойства: v=с/λ, E=hc/λ → объединяющее корпускулярные и волновые свойства фотона,
но E=mc2 → mc2 = hc/λ → λ = hc/c2m = h/cm → λ = h/p, где р-им-
Читать дальше
Конец ознакомительного отрывка
Купить книгу