Jared Diamond - Guns, Germs & Steel
Здесь есть возможность читать онлайн «Jared Diamond - Guns, Germs & Steel» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: 105. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Guns, Germs & Steel
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 100
- 1
- 2
- 3
- 4
- 5
Guns, Germs & Steel: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Guns, Germs & Steel»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Guns, Germs & Steel — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Guns, Germs & Steel», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Z 4 O • GUNS, GERMS, AND STEEL
One side of the two-sided Phaistos Disk.
estimated date of 1700 b.c. makes it by far the earliest printed document in the world. Instead of being etched by hand, as were all texts of Crete's later Linear A and Linear B scripts, the disk's signs were punched into soft clay (subsequently baked hard) by stamps that bore a sign as raised type. The printer evidently had a set of at least 4.5 stamps, one for each sign appearing on the disk. Making these stamps must have entailed a great deal of work, and they surely weren't manufactured just to print this single document. Whoever used them was presumably doing a lot of writing. With those stamps, their owner could make copies much more quickly and neatly than if he or she had written out each of the script's complicated signs at each appearance.
The Phaistos disk anticipates humanity's next efforts at printing, which similarly used cut type or blocks but applied them to paper with ink, not
NECESSITY'S MOTHER • 24 I
to clay without ink. However, those next efforts did not appear until 2,500 vears later in China and 3,100 years later in medieval Europe. Why was the disk's precocious technology not widely adopted in Crete or elsewhere in the ancient Mediterranean? Why was its printing method invented around 1700 b.c. in Crete and not at some other time in Mesopotamia, Mexico, or any other ancient center of writing? Why did it then take thousands of years to add the ideas of ink and a press and arrive at a printing press? The disk thus constitutes a threatening challenge to historians. If inventions are as idiosyncratic and unpredictable as the disk seems to suggest, rHen efforts to generalize about the history of technology may be doomed from the outset.
Technology, in the form of weapons and transport, provides the direct means by which certain peoples have expanded their realms and conquered other peoples. That makes it the leading cause of history's broadest pattern. But why were Eurasians, rather than Native Americans or sub-Saharan Africans, the ones to invent firearms, oceangoing ships, and steel equipment? The differences extend to most other significant technological advances, from printing presses to glass and steam engines. Why were all those inventions Eurasian? Why were all New Guineans and Native Australians in a.d. 1800 still using stone tools like ones discarded thousands of years ago in Eurasia and most of Africa, even though some of the world's richest copper and iron deposits are in New Guinea and Australia, respectively? All those facts explain why so many laypeople assume that Eurasians are superior to other peoples in inventiveness and intelligence.
If, on the other hand, no such difference in human neurobiology exists to account for continental differences in technological development, what does account for them? An alternative view rests on the heroic theory of invention. Technological advances seem to come disproportionately from a few very rare geniuses, such as Johannes Gutenberg, James Watt, Thomas Edison, and the Wright brothers. They were Europeans, or descendants of European emigrants to America. So were Archimedes and other rare geniuses of ancient times. Could such geniuses have equally well been born in Tasmania or Namibia? Does the history of technology depend on nothing more than accidents of the birthplaces of a few inventors?
Still another alternative view holds that it is a matter not of individual inventiveness but of the receptivity of whole societies to innovation. Some societies seem hopelessly conservative, inward looking, and hostile to
2 4 2 ' GUNS, GERMS,and steel
change. That's the impression of many Westerners who have attempted to help Third World peoples and ended up discouraged. The people seem perfectly intelligent as individuals; the problem seems instead to lie with their societies. How else can one explain why the Aborigines of northeastern Australia failed to adopt bows and arrows, which they saw being used by Torres Straits islanders with whom they traded? Might all the societies of an entire continent be unreceptive, thereby explaining technology's slow pace of development there? In this chapter we shall finally come to grips with a central problem of this book: the question of why technology did evolve at such different rates on different continents.
The starting point for our discussion is the common view expressed in the saying "Necessity is the mother of invention." That is, inventions supposedly arise when a society has an unfulfilled need: some technology is widely recognized to be unsatisfactory or limiting. Would-be inventors, motivated by the prospect of money or fame, perceive the need and try to meet it. Some inventor finally comes up with a solution superior to the existing, unsatisfactory technology. Society adopts the solution if it is compatible with the society's values and other technologies.
Quite a few inventions do conform to this commonsense view of necessity as invention's mother. In 1942, in the middle of World War II, the U.S. government set up the Manhattan Project with the explicit goal of inventing the technology required to build an atomic bomb before Nazi Germany could do so. That project succeeded in three years, at a cost of $2 billion (equivalent to over $20 billion today). Other instances are Eli Whitney's 1794 invention of his cotton gin to replace laborious hand cleaning of cotton grown in the U.S. South, and James Watt's 1769 invention of his steam engine to solve the problem of pumping water out of British coal mines.
These familiar examples deceive us into assuming that other major inventions were also responses to perceived needs. In fact, many or most inventions were developed by people driven by curiosity or by a love of tinkering, in the absence of any initial demand for the product they had in mind. Once a device had been invented, the inventor then had to find an application for it. Only after it had been in use for a considerable time did consumers come to feel that they "needed" it. Still other devices, invented to serve one purpose, eventually found most of their use for other, unantic-
NECESSITY'S MOTHER • 2-43
ipated purposes. It may come as a surprise to learn that these inventions in search of a use include most of the major technological breakthroughs of modern times, ranging from the airplane and automobile, through the internal combustion engine and electric light bulb, to the phonograph and transistor. Thus, invention is often the mother of necessity, rather than vice versa.
A good example is the history of Thomas Edison's phonograph, the most original invention of the greatest inventor of modern times. When Edison built his first phonograph in 1877, he published an article proposing ten uses to which his invention might be put. They included preserving the last words of dying people, recording books for blind people to hear, announcing clock time, and teaching spelling. Reproduction of music was not high on Edison's list of priorities. A few years later Edison told his assistant that his invention had no commercial value. Within another few years he changed his mind and did enter business to sell phonographs— but for use as office dictating machines. When other entrepreneurs created jukeboxes by arranging for a phonograph to play popular music at the drop of a coin, Edison objected to this debasement, which apparently detracted from serious office use of his invention. Only after about 20 years did Edison reluctantly concede that the main use of his phonograph was to record and play music.
The motor vehicle is another invention whose uses seem obvious today. However, it was not invented in response to any demand. When Nikolaus Otto built his first gas engine, in 1866, horses had been supplying people's land transportation needs for nearly 6,000 years, supplemented increasingly by steam-powered railroads for several decades. There was no crisis in the availability of horses, no dissatisfaction with railroads.
Because Otto's engine was weak, heavy, and seven feet tall, it did not recommend itself over horses. Not until 1885 did engines improve to the point that Gottfried Daimler got around to installing one on a bicycle to create the first motorcycle; he waited until 1896 to build the first truck.
In 1905, motor vehicles were still expensive, unreliable toys for the rich. Public contentment with horses and railroads remained high until World War I, when the military concluded that it really did need trucks. Intensive postwar lobbying by truck manufacturers and armies finally convinced the public of its own needs and enabled trucks to begin to supplant horse-drawn wagons in industrialized countries. Even in the largest American cities, the changeover took 50 years.
Интервал:
Закладка:
Похожие книги на «Guns, Germs & Steel»
Представляем Вашему вниманию похожие книги на «Guns, Germs & Steel» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Guns, Germs & Steel» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.