Genome Engineering for Crop Improvement

Здесь есть возможность читать онлайн «Genome Engineering for Crop Improvement» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Genome Engineering for Crop Improvement: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Genome Engineering for Crop Improvement»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering—enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins.
Genome Engineering for Crop Improvement Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Genome Engineering for Crop Improvement», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

56 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without doubles tranded DNA cleavage. Nature 533: 420.

57 Kulkarni, K.P., Patil, G., Valliyodan, B. et al. (2018). Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 61: 217–222.

58 Lau, W.C., Rafii, M.Y., Ismail, M.R. et al. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science 6: 832.

59 Li, J., Xiao, J., Grandillo, S. et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (Oryza sativa L.) and African (Oryzaglaberrima S.) rice. Genome 47: 697–704.

60 Li, S., Li, J., Wang, N. et al. (2007). Inheritance and expression of copies of transgenes 1Dx5 and 1Ax1 in elite wheat (Triticumaestivum L.) varieties transferred from transgenic wheat through conventional crossing. ActaBiochimicaetBiophysicaSinica 39: 377–383.

61 Li, D.D., Ruan, X.M., Zhang, J. et al. (2013). Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fiber development. New Phytology 199: 695–707.

62 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169: 960–970.

63 Li, Q., Li, L., Liu, Y. et al. (2017). Influence of TaGW2‐6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science 263: 226–235.

64 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics 44: 465.

65 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.

66 Liang, Z., Chen, K., Li, T. et al. (2017). Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8: 1–5.

67 Liu, G., Wu, Y., Xu, M. et al. (2016). Virus‐induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. International Journal of Molecular Sciences 17: 1557.

68 Liu, J., Wu, X., Yao, X. et al. (2018). Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115: 11327–11332.

69 Lloyd, A.H., Wang, D., and Timmis, J.N. (2012). Single molecule PCR reveals similar patterns of non‐homologous DSB repair in tobacco and Arabidopsis. PLoSOne 7 (2): e32255.

70 Loguercio, L.L., Zhang, J.Q., and Wilkins, T.A. (1999). Differential regulation of six novel MYB‐domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular Genomics and Genetics 261: 660–671.

71 Lou, J., Chen, L., Yue, G. et al. (2009). QTL mapping of grain quality traits in rice. Journal of Cereal Science 50: 145–151.

72 Ma, X., Zhang, Q., Zhu, Q. et al. (2015). A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8: 1274–1284.

73 Machado, A., Wu, Y., Yang, Y. et al. (2009). The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant Journal 59: 52–62.

74 Manik, N. and Ravikesavan, R. (2009). Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. Biotechnology and Molecular Biology Reviews 4: 11–28.

75 Meenu, M. and Xu, B. (2018). A critical review on anti‐diabetic and anti‐obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18): 3019–3031.

76 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42: 401–407.

77 Morgante, M. (2006). Plant genome organisation and diversity: the year of the junk. Current Opinion in Biotechnology 17: 168–173.

78 Nalam, V.J., Alam, S., Keereetaweep, J. et al. (2015). Facilitation of Fusariumgraminearum infection by 9‐lipoxygenases in Arabidopsis and wheat. Molecular Plant‐Microbe Interactions 28: 1142–1152.

79 Nester, E.W. (2014). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5: 730.

80 Nordin, Y. and Lantbruksakademien, K.S.O. (2008). Golden Rice and Other Biofortified Food Crops for Developing Countries: Challenges and Potential. Rome, Italy: FAO.

81 Pacher, M. and Puchta, H. (2017). From classical mutagenesis to nuclease based breeding directing natural DNA repair for a natural end‐product. Plant Journal 90: 819–833.

82 Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread‐making quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141–153.

83 Pegoraro, C., da Mertz, L.M., Maia, L.C. et al. (2011). Importance of heat shock proteins in maize. Journal of Crop Science and Biotechnology 14: 85–95.

84 Peng, B., Kong, H., Li, Y. et al. (2014). OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications 5: 4847.

85 Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. (2011). A novel FAD2‐1 a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theoretical and Applied Genetics 123: 793–802.

86 Pliatsika, V. and Rigoutsos, I. (2015). Off‐spotter: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct 10: 4.

87 Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.

88 Prykhozhij, S.V., Rajan, V., Gaston, D., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10: e0119372.

89 Puchta, H. (2005). The repair of double‐strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.

90 Qi, W., Zhu, T., Tian, Z. et al. (2016). High‐efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA processing system‐based strategy in maize. BMC Biotechnology 16: 58.

91 Qin, Y.M. and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell growth mode. Current Opinion in Plant Biology 14: 106–111.

92 Quétier, F. (2016). The CRISPR‐Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Science 242: 65–76.

93 Regina, A., Bird, A., Topping, D. et al. (2006). High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats. Proceedings of the National Academy of Sciences 103: 3546–3551.

94 Ruan, Y. (2007). Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single‐celled cotton fibre. Functional Plant Biology 34: 1–10.

95 Sabouri, A., Rabiei, B., Toorchi, M. et al. (2012). Mapping quantitative trait loci (QTL) associated with cooking quality in rice (Oryza sativa. L). Australian Journal of Crop Science 6: 808.

96 Sánchez‐León, S., Gil‐Humanes, J., Ozuna, C.V. et al. (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16: 902–910.

97 Schaart, J.G., Van De Wiel, C.C.M., Lotz, L.A.P., and Smulders, M.J.M. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science 21: 438–449.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Genome Engineering for Crop Improvement»

Представляем Вашему вниманию похожие книги на «Genome Engineering for Crop Improvement» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Genome Engineering for Crop Improvement»

Обсуждение, отзывы о книге «Genome Engineering for Crop Improvement» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x