11. Rahman, M.A., Harwansh, R., Mirza, M.A., Hussain, S., Hussain, A., Oral lipid based drug delivery system (LBDDS): Formulation, characterization and application: a review. Curr. Drug Deliv. , 8, 330–45, 2011.
12. Kalepu, S., Manthina, M., Padavala, V., Oral lipid-based drug delivery systems—an overview. Acta Pharm. Sin. B , 3, 361–372, 2013.
13. Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. , 13, 238–252, 1965.
14. Allen, T.M., Liposomes. Opportunities in drug delivery. Drugs , 54, 8–14, 1997.
15. Immordino, M.L., Dosio, F., Cattel, L., Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine , 1, 297–315, 2006.
16. Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., Fessi, H., Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. Biotechnol. , 1, 147–168, 2012.
17. Müller, R.H., Radtke, M., Wissing, S.A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. , 54, 131–155, 2002.
18. Mehnert, W. and Mäder, K., Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. , 64, 83–101, 2012.
19. Washington, C., Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev. , 20, 131–145, 1996.
20. McIntosh, T.J., Simon, S.A., Needham, D., Huang, C.H., Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry , 31, 2012–2020, 1992.
21. Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. , 10, 81–98, 2015.
22. Pattni, B.S., Chupin, V.V., Torchilin, V.P., New Developments in Liposomal Drug Delivery. Chem. Rev. , 115, 10938–10966, 2015.
23. Bozzuto, G. and Molinari, A., Liposomes as nanomedical devices. Int. J. Nanomedicine , 10, 975–999, 2015.
24. Lu, Y. m., Huang, J. y., Wang, H., Lou, X. f, Liao, M. h., Hong, L. j., Tao, R. r., Ahmed, M.M., Shan, C. l., Wang, X. l., Fukunaga, K., Du, Y. z., Han, F., Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials , 35, 530–537, 2014.
25. Martins, S.M., Sarmento, B., Nunes, C., Lúcio, M., Reis, S., Ferreira, D.C., Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm. , 85, 488–502, 2013.
26. Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., Han, X., Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm. , 327, 153–159, 2006.
27. Oh, H.R., Jo, H.Y., Park, J.S., Kim, D.E., Cho, J.Y., Kim, P.H., Kim, K.S., Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials , 6, 141, 2016.
28. Jiang, J., Yang, S.J., Wang, J.C., Yang, L.J., Xu, Z.Z., Yang, T., Liu, X.Y., Zhang, Q., Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur. J. Pharm. Biopharm. , 76, 170–178, 2010.
29. Kawakami, S., Fumoto, S., Nishikawa, M., Yamashita, F., Hashida, M., In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm Res. , 17, 3, 306–313, 2000.
30. Kuo, Y.C. and Chen, H.H., Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int. J. Pharm. , 365, 206–213, 2009.
31. Slepushkin, V.A., Simões, S., Dazin, P., Newman, M.S., Guo, L.S., De Lima, M.C.P., Düzgüneş, N., Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo . J. Biol. Chem. , 272, 2382–2388, 1997.
32. Paliwal, S.R., Paliwal, R., Vyas, S.P., A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. , 22, 231–242, 2015.
33. Litzinger, D.C. and Huang, L., Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta , 1113, 201–27, 1992.
34. Karanth, H. and Murthy, R.S.R., pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol. , 59, 469–483, 2007.
35. Kashanian, S., Azandaryani, A.H., Derakhshandeh, K., New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Nanomedicine , 6, 2393–401, 2011.
36. Momekova, D., Rangelov, S., Yanev, S., Nikolova, E., Konstantinov, S., Romberg, B., Storm, G., Lambov, N., Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur. J. Pharm. Sci. , 32, 308–317, 2007.
37. Momekova, D., Rangelov, S., Lambov, N., Long-Circulating, pH-Sensitive Liposomes. Methods Mol. Biol. , 1522, 209–226, Humana Press Inc., 2017.
38. Roux, E., Stomp, R., Giasson, S., Pézolet, M., Moreau, P., Leroux, J.C., Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J. Pharm. Sci. , 91, 1795–1802, 2002.
39. Yatvin, M.B., Weinstein, J.N., Dennis, W.H., Blumenthal, R., Design of liposomes for enhanced local release of drugs by hyperthermia. Science (80-.) , 202, 1290–1293, 1978.
40. Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., Ten Hagen, T.L.M., Needham, D., Dewhirst, M.W., Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors. Cancer Res. , 72, 5566–5575, 2012.
41. Kneidl, B., Peller, M., Winter, G., Lindner, L.H., Hossann, M., Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine , 9, 4387–4398, 2014.
42. Landon, C.D., Park, J.Y., Needham, D., Dewhirst, M.W., Nanoscale drug delivery and hyperthermia: The materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J. , 3, 38–64, 2011.
43. Hossann, M., Wiggenhorn, M., Schwerdt, A., Wachholz, K., Teichert, N., Eibl, H., Issels, R.D., Lindner, L.H., In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochim. Biophys. Acta - Biomembr. , 1768, 2491–2499, 2007.
44. Lindner, L.H., Reinl, H.M., Schlemmer, M., Stahl, R., Peller, M., Paramagnetic thermosensitive liposomes for MR-thermometry. Int. J. Hyperther. , 21, 575–588, 2005.
45. McDannold, N., Fossheim, S.L., Rasmussen, H., Martin, H., Vykhodtseva, N., Hynynen, K., Heat-activated Liposomal MR Contrast Agent: Initial in Vivo Results in Rabbit Liver and Kidney. Radiology , 230, 743–752, 2004.
46. Yokoyama, M., Kwon, G.S., Okano, T., Sakurai, Y., Seto, T., Kataoka, K., Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem. , 3, 295–301, 1992.
47. Kedar, U., Phutane, P., Shidhaye, S., Kadam, V., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine Nanotechnology. Biol. Med. , 6, 714–729, 2010.
48. Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y., Mechanism of Surfactant Micelle Formation. Langmuir , 24, 10771–10775, 2008.
Читать дальше