Machine Vision Inspection Systems, Machine Learning-Based Approaches

Здесь есть возможность читать онлайн «Machine Vision Inspection Systems, Machine Learning-Based Approaches» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Vision Inspection Systems, Machine Learning-Based Approaches: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Vision Inspection Systems, Machine Learning-Based Approaches»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Machine Vision Inspection Systems (MVIS) is a multidisciplinary research field that emphasizes image processing, machine vision and, pattern recognition for industrial applications. Inspection techniques are generally used in destructive and non-destructive evaluation industry. Now a day's the current research on machine inspection gained more popularity among various researchers, because the manual assessment of the inspection may fail and turn into false assessment due to a large number of examining while inspection process.
This volume 2 covers machine learning-based approaches in MVIS applications and it can be employed to a wide diversity of problems particularly in Non-Destructive testing (NDT), presence/absence detection, defect/fault detection (weld, textile, tiles, wood, etc.,), automated vision test & measurement, pattern matching, optical character recognition & verification (OCR/OCV), natural language processing, medical diagnosis, etc. This edited book is designed to address various aspects of recent methodologies, concepts, and research plan out to the readers for giving more depth insights for perusing research on machine vision using machine learning-based approaches.

Machine Vision Inspection Systems, Machine Learning-Based Approaches — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Vision Inspection Systems, Machine Learning-Based Approaches», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

90 83

91 84

92 85

93 86

94 87

95 88

96 89

97 90

98 91

99 92

100 93

101 94

102 95

103 96

104 97

105 98

106 99

107 100

108 101

109 102

110 103

111 104

112 105

113 106

114 107

115 109

116 110

117 111

118 112

119 113

120 114

121 115

122 116

123 117

124 118

125 119

126 120

127 121

128 122

129 123

130 124

131 125

132 126

133 127

134 129

135 130

136 131

137 132

138 133

139 134

140 135

141 136

142 137

143 138

144 139

145 140

146 141

147 142

148 143

149 144

150 145

151 146

152 147

153 148

154 149

155 150

156 151

157 152

158 153

159 155

160 156

161 157

162 158

163 159

164 160

165 161

166 162

167 163

168 164

169 165

170 166

171 167

172 168

173 169

174 170

175 171

176 172

177 173

178 174

179 175

180 176

181 177

182 178

183 179

184 180

185 181

186 182

187 183

188 184

189 185

190 186

191 187

192 188

193 189

194 190

195 191

196 192

197 193

198 194

199 195

200 196

201 197

202 198

203 199

204 200

205 201

206 202

207 203

208 204

209 205

210 206

211 207

212 208

213 209

214 210

215 211

216 212

217 213

218 214

219 215

220 216

221 217

222 219

223 220

224 221

225 222

226 223

227 224

228 225

229 226

230 227

231 228

232 229

233 230

234 231

235 232

236 233

237 234

238 235

239 236

240 237

241 238

242 239

243 241

244 242

245 243

246 244

247 245

248 246

249 247

250 248

251 249

252 250

253 251

254 252

255 253

256 254

257 255

258 256

259 257

260 258

261 259

262 260

263 261

264 262

265 263

266 264

267 265

268 266

269 267

270 268

271 269

272 270

273 271

274 272

275 273

276 274

277 275

278 276

279 277

280 278

281 279

282 280

283 281

284 282

285 283

286 284

287 285

288 286

289 287

290 288

291 289

292 290

293 291

294 292

295 293

296 294

297 295

298 296

299 297

300 298

301 299

302 300

303 301

304 302

305 303

306 304

307 305

308 306

309 307

310 308

311 309

312 310

313 311

314 312

315 313

316 314

317 315

318 316

319 317

320 318

321 319

322 320

323 321

324 323

325 324

326 325

327 326

328 327

329 329

Scrivener Publishing

100 Cummings Center, Suite 541J

Beverly MA, 01915-6106

Publishers at Scrivener

Martin Scrivener ( martin@scrivenerpublishing.com)

Phillip Carmical ( pcarmical@scrivenerpublishing.com)

Machine Vision Inspection Systems, Volume 2

Machine Learning-Based Approaches

Edited by

Muthukumaran Malarvel

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India

Soumya Ranjan Nayak

Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India

Prasant Kumar Pattnaik

School of Computer Engineering, KIIT Deemed to be University, India

Surya Narayan Panda

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India

This edition first published 2021 by John Wiley Sons Inc 111 River Street - фото 1

This edition first published 2021 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2021 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-78609-2

Cover image: Pixabay.Com

Cover design by: Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface

The edited book aims to bring together leading researchers, academic scientists, and research scholars to put forward and share their experiences and research results on all aspects of an inspection system for detection analysis for various machine vision applications. It also provides a premier interdisciplinary platform for educators, practitioners and researchers to present and discuss the most recent innovations, trends, methodology, applications, and concerns as well as practical challenges encountered and solutions adopted in the inspection system in terms of machine learning-based approaches of machine vision for real and industrial application. The book is organized into fourteen chapters.

Chapter 1deliberated about various dangerous infectious viruses affect human society with a detailed analysis of transmission electron microscopy virus images (TEMVIs). In this chapter, several TEMVIs such as Ebola virus (EV), Enterovirus (ENV), Lassa virus (LV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus (ZV), etc. are analyzed. The ML-based approach mainly focuses on the classification techniques such as Logistic Regression (LR), Neural Network (NN), k-Nearest Neighbors (kNN) and Naive Bayes (NB) for the processing of TEMVIs.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Vision Inspection Systems, Machine Learning-Based Approaches»

Представляем Вашему вниманию похожие книги на «Machine Vision Inspection Systems, Machine Learning-Based Approaches» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Vision Inspection Systems, Machine Learning-Based Approaches»

Обсуждение, отзывы о книге «Machine Vision Inspection Systems, Machine Learning-Based Approaches» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x