50 50 Dudowicz, J., Freed, K.F., and Douglas, J.F. (2003). J. Chem. Phys. 119, Article ID: 12645.
51 51 Douglas, J.F., Dudowicz, J., and Freed, K.F. (2008). J. Chem. Phys. 128, Article ID: 224901.
52 52 Greer, S.C. (2002). Annu. Rev. Phys. Chem. 53: 173–200.
53 53 Greer, S.C. (1998). J. Phys. Chem. B 102: 5413–5422.
54 54 Greer, S.C. (1996). Adv. Chem. Phys. 94: 261–296.
55 55 Dainton, F.S. and Ivin, K.J. (1948). Nature 162: 705–707.
56 56 Dainton, F.S. and Ivin, K.J. (1958). Q. Rev. Chem. Soc. 12: 61–92.
57 57 van der Schoot, P. (2005). Theory of supramolecular polymerization. In: Supramolecular Polymers (ed. A. Ciferri), 77–106. London: Taylor & Francis.
58 58 Flory, P.J. (1942). J. Chem. Phys. 10: 51–61.
59 59 Huggins, M.L. (1942). Ann. N.Y. Acad. Sci. 43: 1–32.
60 60 Lou, X.‐W., Zhu, Q.‐S., van Dongeren, J.L.J., and Meijer, E.W. (2004). J. Chromatogr. A 1029: 67–75.
61 61 Meier, M.A.R., Hofmeier, H., Abeln, C.H. et al. (2006). e‐Polymers 6, Article ID: 016.
62 62 Winnik, M.A. (1981). Chem. Rev. 81: 491–524.
63 63 Semlyen, J.A. (2000). Cyclic Polymers. Dordrecht: Kluwer Academic.
64 64 Kuchanov, S., Slot, H., and Stroeks, A. (2004). Prog. Polym. Sci. 29: 563–633.
65 65 Kricheldorf, H.R. and Schwarz, G. (2003). Macromol. Rapid Commun. 24: 359–381.
66 66 Scott, D.W. (1946). J. Am. Chem. Soc. 68: 2294–2298.
67 67 Brown, J.F. Jr., and Slusarczuk, G.M.J. (1965). J. Am. Chem. Soc. 87: 931–932.
68 68 Carmichael, J.B. and Winger, R. (1965). J. Polym. Sci., Part A: Gen. Pap. 3: 971–984.
69 69 Flory, P.J. and Semlyen, J.A. (1966). J. Am. Chem. Soc. 88: 3209–3212.
70 70 Hodge, P. and Kamau, S.D. (2003). Angew. Chem. Int. Ed. 42: 2412–2414.
71 71 Gee, G. (1952). Trans. Faraday Soc. 48: 515–526.
72 72 Tobolsky, A.V. and Eisenberg, A. (1959). J. Am. Chem. Soc. 81: 780–782.
73 73 Steudel, R., Mäusle, H.‐J., Rosenbauer, D. et al. (1981). Angew. Chem. Int. Ed. Engl. 20: 394–395.
74 74 Kuhn, W. (1934). Colloid. Polym. Sci. 68: 2–15.
75 75 Flory, P.J. (1969). Statistical Mechanics of Chain Molecules. New York: Wiley‐Interscience.
76 76 Morawetz, H. and Goodman, N. (1970). Macromolecules 3: 699–700.
77 77 Crothers, D.M. and Metzger, H. (1972). Immunochemistry 9: 341–357.
78 78 Zhou, H.‐X. (2001). J. Phys. Chem. B 105: 6763–6766.
79 79 Zhou, H.‐X. (2003). J. Mol. Biol. 329: 1–8.
80 80 Mandolini, L. (1987). Adv. Phys. Org. Chem. 22: 1–111.
81 81 Page, M.I. and Jencks, W.P. (1971). Proc. Natl. Acad. Sci. U.S.A. 68: 1678–1683.
82 82 Page, M.I. (1973). Chem. Soc. Rev. 2: 295–323.
83 83 Ercolani, G., Mandolini, L., Mencarelli, P., and Roelens, S. (1993). J. Am. Chem. Soc. 115: 3901–3908.
84 84 Galli, C. and Mandolini, L. (2000). Eur. J. Org. Chem. 2000: 3117–3125.
85 85 Kirby, A.J. (2008). Adv. Phys. Org. Chem. 17: 183–278.
86 86 Hamacek, J., Borkovec, M., and Piguet, C. (2006). Dalton Trans.: 1473–1490.
87 87 Jacobsen, H. and Stockmayer, W.H. (1950). J. Chem. Phys. 18: 1600–1606.
88 88 Chan, H.‐S. and Dill, K.A. (1989). J. Chem. Phys. 90: 492–509.
89 89 Hiley, B.J. and Sykes, M.F. (1961). J. Chem. Phys. 34: 1531–1537.
90 90 Martin, J.L., Sykes, M.F., and Hioe, F.T. (1967). J. Chem. Phys. 46: 3478–3481.
91 91 Flory, P.J., Suter, U.W., and Mutter, M. (1976). J. Am. Chem. Soc. 98: 5733–5739.
92 92 Chen, C.‐C. and Dormidontova, E.E. (2004). Macromolecules 37: 3905–3917.
93 93 Harris, R.E. (1970). J. Phys. Chem. 74: 3102–3111.
94 94 Hodge, P. and Colquhoun, H.M. (2005). Polym. Adv. Technol. 16: 84–94.
95 95 Cantrill, S.J., Youn, G.J., Stoddard, J.F., and Williams, D.J. (2001). J. Org. Chem. 66: 6857–6872.
96 96 Ashton, P.R., Baxter, I., Cantrill, S.J. et al. (1998). Angew. Chem. Int. Ed. Engl. 37: 1294–1297.
97 97 Ashton, P.R., Parsons, I.W., Raymo, F.M. et al. (1998). Angew. Chem. Int. Ed. Engl. 37: 1913–1916.
98 98 Abed, S., Boileau, S., and Bouteiller, L. (2000). Macromolecules 33: 8479–8487.
99 99 Bielejewska, A.G., Marjo, C.E., Prins, L.J. et al. (2001). J. Am. Chem. Soc. 123: 7518–7533.
100 100 Zhao, D.‐H. and Moore, J.S. (2003). J. Am. Chem. Soc. 125: 16294–16299.
101 101 Zhao, D.‐H. and Yue, K. (2008). Macromolecules 41: 4029–4036.
102 102 Ferrone, F.A. (1999). Analysis of protein aggregation kinetics. In: Methods of Enzymology, vol. 309 (ed. R. Wetzel), 256–273. New York, NY: Academic Press.
103 103 Katshchiev, D. (2000). Nucleation: Basic Theory with Applications. Oxford: Butterworth‐Heinemann.
104 104 Wolffs, M., Korevaar, P.A., Jonkheijm, P. et al. (2008). Chem. Commun.: 4613–4615.
105 105 Cabaleiro‐Lago, C., Quinlan‐Pluck, F., Lynch, I. et al. (2008). J. Am. Chem. Soc. 130: 15437–15443.
106 106 Linse, S., Cabaleiro‐Lago, C., Xue, W.‐F. et al. (2007). Proc. Natl. Acad. Sci. U.S.A. 104: 8691–8696.
107 107 Rogers, S.S., Krebs, M.R.H., Bromley, E.H.C. et al. (2006). Biophys. J. 90: 1043–1054.
108 108 Powers, E.T. and Powers, D.L. (2006). Biophys. J. 91: 122–132.
109 109 Firestone, M.P., De Levie, R., and Rangarajan, S.K. (1983). J. Theor. Biol. 104: 535–552.
110 110 Mukerjee, P. (1972). J. Phys. Chem. 76: 565–570.
111 111 Mukerjee, P. (1967). Adv. Colloid Interface Sci. 1: 242–275.
112 112 Mukerjee, P., Mysels, K., and Kapauan, P. (1967). J. Phys. Chem. 71: 4166–4175.
113 113 Mukerjee, P. (1969). J. Phys. Chem. 73: 2054–2056.
114 114 Mukerjee, P. (1974). J. Pharm. Sci. 63: 972–981.
115 115 Tanford, C. (1974). J. Phys. Chem. 78: 2469–2479.
116 116 Yokozawa, T., Asai, T., Sugi, R. et al. (2000). J. Am. Chem. Soc. 122: 8313–8314.
117 117 Yokozawa, T. and Yokoyama, A. (2007). Prog. Polym. Sci. 32: 147–172.
118 118 Yokoyama, A. and Yokozawa, T. (2007). Macromolecules 40: 4093–4101.
119 119 Metselaar, G.A., Cornelissen, J.J.L.M., Rowan, A.E., and Nolte, R.J.M. (2005). Angew. Chem. Int. Ed. 44: 1990–1993.
120 120 Nakano, T., Okamoto, Y., and Hatada, K. (1992). J. Am. Chem. Soc. 114: 1318–1329.
121 121 Iwakura, Y., Uno, K., and Oya, M. (1967). J. Polym. Sci., Part A1: Polym. Chem. 5: 2867–2874.
122 122 Komoto, T., Akaishi, T., Oya, M., and Kawai, T. (1972). Makromol. Chem. 154: 151–159.
123 123 Ikeda, M., Nobori, T., Schmutz, M., and Lehn, J.‐M. (2005). Chem. Eur. J. 11: 662–668.
124 124 Tomović, Ž., van Dongen, J., George, S.J. et al. (2007). J. Am. Chem. Soc. 129: 16190–16196.
125 125 Kaiser, T.E., Stepanenko, V., and Würthner, F. (2009). J. Am. Chem. Soc. 131: 6719–6732.
126 126 Kano, K., Fukuda, K., Wakami, H. et al. (2000). J. Am. Chem. Soc. 122: 7494–7502.
127 127 Hong, D.‐J., Lee, E., and Lee, M. (2007). Chem. Commun.: 1801–1803.
128 128 Mayoral, M.J., Rest, C., Stepanenko, V. et al. (2013). J. Am. Chem. Soc. 135: 2148–2151.
129 129 Wang, X., Han, Y., Liu, Y. et al. (2017). Angew. Chem. Int. Ed. 56: 12466–12470.
130 130 Arnaud, A., Belleney, J., Boué, F. et al. (2004). Angew. Chem. Int. Ed. 43: 1718–1721.
131 131 Horne, W.S., Stout, C.D., and Ghadiri, M.R. (2003). J. Am. Chem. Soc. 125: 9372–9376.
132 132 Mukhopadhyay, R.D. and Ajayaghosh, A. (2015). Science 349: 241–242.
133 133 Besenius, P., Portale, G., Bomans, P.H.H. et al. (2010). Proc. Natl. Acad. Sci. U.S.A. 107: 17888–17893.
134 134 Ogi, S., Sugiyasu, K., Manna, S. et al. (2014). Nat. Chem. 6: 188.
135 135 Gilroy, J.B., Gädt, T., Whittle, G.R. et al. (2010). Nat. Chem. 2: 566–570.
136 136 Ulbricht, C., Beyer, B., Friebe, C. et al. (2009). Adv. Mater. 21: 4418–4441.
137 137 Roy, N., Buhler, E., and Lehn, J.‐M. (2013). Polym. Chem. 4: 2949–2957.
Читать дальше