La predicción de estos efectos es difícil, ya que la velocidad de corrosión se determina a partir de una serie de variables de cierta complejidad. El empleo de tablas de potencial eléctrico ignora la presencia de películas superficiales de óxido y los efectos de relaciones de área y de diferentes soluciones (electrolitos) químicas. Por esta razón, un empleo desinformado de estas tablas puede conducir a resultados erróneos. Dichas tablas deberían utilizarse de manera cuidadosa y solamente para valoraciones iniciales.
Los aceros inoxidables generalmente forman el cátodo en un enlace bimetálico y por ello no sufren corrosión. El contacto entre aceros inoxidables austeníticos y zinc o aluminio puede dar lugar a una corrosión adicional de los últimos dos metales. Es poco probable que el efecto de dicha corrosión sea significativo desde un punto de vista estructural. No obstante, el polvo blanco/gris resultante es absolutamente antiestético.
El acoplamiento con cobre debe ser en general evitado excepto bajo condiciones adecuadas no severas.
La corrosión se atribuye frecuentemente a la acción galvánica, cuando su verdadera causa es efectivamente unas condiciones anormales de operación. Así, por ejemplo, el uso de ácido clorhídrico para sustituir un material de limpieza normal puede destruir la película pasiva del acero inoxidable. En tal caso, se puede formar una celda galvánica. El volver a proyectar y a construir una pieza que sea completamente de acero inoxidable puede resultar muy costoso y la nueva pieza proyectada puede ser difícil de fabricar. Así pues, cuando aparentemente la acción galvánica sea la única causa de un desperfecto en una unidad que, demostradamente, es de un buen diseño, convendrá realizar una verificación meticulosa para cerciorarse de que todas las condiciones de operación son normales.
Recuerde
Los aceros inoxidables generalmente forman el cátodo en un enlace bimetálico y, por ello, no sufren corrosión.
Corrosión por picaduras
Como su nombre indica, la corrosión por picaduras toma la forma de pequeños hoyos localizados. Esto ocurre como resultado de la rotura local de la capa pasivante, normalmente por iones cloruro, aunque otros haluros y otros aniones pueden tener un efecto similar. Durante el desarrollo de una picadura, los productos corrosivos pueden crear una solución muy corrosiva, que a menudo conduce a procesos de corrosión de alta velocidad. Sin embargo, en la mayoría de aplicaciones estructurales, las picaduras suelen ser solo superficiales y la reducción de sección es despreciable. Por otra parte, los productos corrosivos pueden ensuciar los principales rasgos arquitectónicos de una obra. En estructuras de canalización, tuberías y contenedores debe adoptarse una tolerancia menor en cuanto a la corrosión por picaduras.
Dado que el ión cloruro es, con diferencia, el causante más común del ataque por picaduras, los ambientes costeros y marinos son bastante agresivos. La probabilidad de que un cierto entorno provoque ataque por picaduras depende, además del contenido de cloruros, de factores tales como la temperatura, la acidez o la alcalinidad y el contenido de gases oxidantes. La resistencia al ataque por picaduras de un acero inoxidable depende de su composición química. El cromo, el molibdeno y el nitrógeno mejoran la resistencia al ataque por picaduras.
Una medida aproximada de la resistencia al ataque por picaduras viene dada por el Índice de Picaduras o Equivalente a la resistencia al ataque por picaduras (Pitting Resistance Equivalent, PRE) definido como:
La determinación del PRE de un acero inoxidable permite llevar a cabo un análisis comparativo entre los diferentes aceros inoxidables.
El acero de grado 1,4301 tiene el PRE más bajo que muchos aceros y no es, por tanto, el grado más adecuado para aplicaciones arquitectónicas en ambientes marinos excepto, quizás, para elementos estructurales internos protegidos de forma efectiva de espuma marina y niebla. El acero de grado 1,4301 también puede presentar niveles inaceptables de picaduras en atmósferas industriales severas y, por consiguiente, será preferible seleccionar el acero de grado 1,4401 o acero dúplex.
Corrosión bajo tensión
El desarrollo de la corrosión bajo tensión (Stress Corrosion Cracking, SCC) requiere de la existencia simultánea de tensiones de tracción y de factores ambientales específicos que difícilmente se encuentran en condiciones ambientales normales de edificación. Las tensiones no necesitan ser altas en relación con la tensión de prueba del material y pueden estar generadas por cargas y durante los procesos de fabricación tales como soldadura o el doblado.
Los aceros inoxidables dúplex muestran generalmente una mayor resistencia a la corrosión bajo tensión que los aceros austeníticos más habituales. Se han desarrollado aceros inoxidables austeníticos con aleaciones superiores, como por ejemplo los grados 1,4539, 1,4529, 1,4547 y 1,4565, para aplicaciones en las que existe riesgo de corrosión bajo tensión.
Proyecto y fabricación. Cómo reducir al mínimo la corrosión
La medida más importante a tomar para prevenir los problemas que puede ocasionar la corrosión es seleccionar adecuadamente el grado de acero inoxidable con los procedimientos de fabricación idóneos para el ambiente que se prevea. En cualquier caso, tras la selección adecuada de un determinado acero, se conseguirá hacer uso de todo el potencial de resistencia a corrosión que puede ofrecer dicho acero, si tal selección viene acompañada por buenos detalles constructivos. Las medidas anticorrosivas a adoptar deberían estar presentes en la fase de planteamiento del proyecto y obra y en el desarrollo y diseño de todos los detalles constructivos.
Los problemas debidos a la corrosión pueden ser eliminados frecuentemente, modificando de forma apropiada el diseño sin necesidad de cambiar el tipo de acero.
Algunos de los parámetros de diseño a tener en cuenta son: la forma de las juntas, la continuidad de la superficie y la concentración de las tensiones. Las soldaduras a tope son preferibles a las soldaduras en solape, y es imprescindible utilizar buenos métodos de soldadura. Se reducirá al mínimo el uso de piezas complementarias, tales como planchas o placas de refuerzo rodeadas de costuras o cordones de soldadura para evitar tensiones biaxiales que resultan difíciles de eliminar por tratamiento térmico.
Todo el equipo deberá limpiarse meticulosamente para eliminar toda contaminación producida por óxidos, polvo de hierro, partículas procedentes de las herramientas, fundente de soldadura, suciedades y substancias orgánicas.
Estas substancias extrañas pueden ser eliminadas limpiándolas a chorro o por decapado.
Una buena solución para el decapado consiste en el 10 % de ácido nítrico y el 1 % de ácido fluorhídrico.
Los resultados de los ensayos de laboratorio solamente podrán servir de guía debido a la dificultad de reproducir las condiciones que se presentan verdaderamente en la práctica.
Los datos publicados sobre la corrosión como resultado de distintos ensayos, pueden estar basados en unas condiciones químicas, temperaturas, velocidades y aireación que difieran de las reales. Por este motivo, y siempre que sea posible, se deberá utilizar, para los ensayos prácticos, procedimientos similares o comparables a los que se darán en la realidad. Convendrá realizar ensayos de fatiga a probetas con corrosión, sometiéndolas a varios niveles de esfuerzo o tensión con el fin de poder apreciar la susceptibilidad del acero al agrietamiento una vez terminadas de fabricar.
Читать дальше