Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Здесь есть возможность читать онлайн «Space Physics and Aeronomy, Ionosphere Dynamics and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Space Physics and Aeronomy, Ionosphere Dynamics and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Space Physics and Aeronomy, Ionosphere Dynamics and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth's upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities.9;
Ionosphere Dynamics and Applications Volume highlights include:9;
Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Space Physics and Aeronomy, Ionosphere Dynamics and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Space Physics and Aeronomy, Ionosphere Dynamics and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Physics‐based models, which depend on high‐latitude electric field specification, suffer from the lack of high resolution in current electric field models. An assessment of current empirical, physics‐based GCMs and MHD coupled models shows that for the events studied, model energy input does not show good agreement with observations. As energy input is central to model predictions of energy dissipation into heating of ions and neutrals, it is not altogether surprising that observations of ion and neutral perturbations during magnetic storms do not agree with models in which the auroral zone is assumed to be the primary locus of Joule heating (Shim et al., 2012; Huang et al., 2016, 2017b).

A number of innovative approaches in modeling and data analysis have been proposed, which may benefit the goal of more accurate specification and forecast of magnetospheric energy input and dissipation in the IT system.

ACKNOWLEDGMENTS

This research was supported by the Air Force Office of Scientific Research (LRIR 18RVCOR127).

REFERENCES

1 Ahn, B.‐H., Akasofu, S.‐I., & Kamide, Y. (1983b). The joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. Journal of Geophysical Research, 88, A8, 6275–6287.

2 Ahn, B. ‐H., Robinson, M. R., Kamide, Y., & Akasofu, S.‐I. (1983a). Electric conductivities, electric fields and auroral particle energy injection rate in the auroral ionosphere and their empirical relations to the horizontal magnetic disturbances. Planet. Space Sci. 31, 6, 641–653.

3 Akbari, H., Goodwin, L. V., Swoboda, J., St.‐Maurice, J.‐P., & Semeter, J. L. (2017). Extreme plasma convection and frictional heating of the ionosphere: ISR observations. Journal of Geophysical Research: Space Physics, 122, 7581– 7598. doi:10.1002/2017JA023916

4 Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A., (2009). The DataAssimilation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc., 90, 1283– 1296, http://dx.doi.org/10.1175/2009BAMS2618.1

5 Araki, T., Schlegel, K., & Lühr, H. (1989). Geomagnetic effects of the Hall and Pedersen current flowing in the auroral ionosphere. Journal of Geophysical Research, 94, A12, 17185–17199.

6 Axford, W. I. (1969). Magnetospheric convection. Reviews of Geophysics., 7, 1, 421–459.

7 Axford, W. I., & Hines, C. O., A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464.

8 Banks, P. M. (1977). Observations of joule and particle heating in the auroral zone. Journal of Atmospheric and Terrestrial Physics, 39, 179–193.

9 Banks, P. M., Foster, J. C., & Doupnik, J. R. (1981). Chatanika radar observations relating to the latitudinal and local time variations of Joule heating. Journal of Geophysical Research, 86, A8, 6869–6878.

10 Brekke, A. (1976). Electric fields, Joule and particle heating in the high latitude thermosphere. Journal of Atmospheric and Terrestrial Physics, 38, 887–895.

11 Bust, G. S., Garner, T. W., & Gaussiran, T. L., II (2004). Ionospheric Data Assimilation ThreeDimensional (IDA3D): A global, multi‐sensor, electron density specification algorithm. Journal of Geophysical Research, 109, A11312. doi:10.1029/2003JA010234

12 Chaston, C. C., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211. doi:10.1029/2004JA010483

13 Chen, Y., et al. (2017). Global three‐dimensional simulation of Earth’s dayside reconnection using a two‐way coupled magnetohydrodynamics with embedded particle‐in‐cell model: Initial results. Journal of Geophysical Research, 122, 10,318– 10,335. https://doi.org/10.1002/2017JA024186

14 Codrescu, M. V., Fuller‐Rowell, T. J., & Foster, J. C. (1995). On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere. Geophysical Research Letters., 22, 2393– 2396.

15 Codrescu, M. V., Fuller‐Rowell, T. J., Foster, J. C., Holt, J. M.,, & Cariglia, S. J. (2000). Journal of Geophysical Research. doi:10.1029/1999JA900463

16 Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller‐Rowell, T. J., Dobin, A., Jakowsky, N., Khalsa, H., et al. (2012). A real‐time run of the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model. Space Weather, 10, S02001. doi:10.1029/2011SW000736

17 Cole, K. D. (1962). Joule heating of the upper atmosphere. Aus. J. Phys., 15, 223.

18 Cosgrove, R. B., & Codrescu, M. (2009). Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model. Journal of Geophysical Research, 114, A06301. doi:10.1029/2008JA013929

19 Cosgrove, R. B., Bahcivan, H., Chen, S., Strangeway, R. J., Ortega, J., Alhassan, M., Xu, Y., et al. (2014). Empirical model of Poynting flux derived from FAST data and a cusp signature. Journal of Geophysical Research, 119, 411– 430. doi:10.1002/2013JA019105.

20 Coumans, V., Gerard, J. C., Hubert, B., Meurant, M., & Mende, S. B. (2004). Global auroral conductance distribution due to electron and proton precipitation from IMAGE‐FUV observations. Annals of Geophysics, 22, 1595–1611.

21 Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2015). Mapping high‐latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research, 120, 5854–5870. doi:10. 1002/2014JA020463

22 Dickinson, R. E., Ridley, E. C., & Roble, R. G. (1981). A three dimensional general circulation model of the thermosphere. Journal of Geophysical Research, 86, 1499–1512.

23 Dickinson, R. E., Ridley, E. C., & Roble, R. G (1984). Thermospheric general circulation with coupled dynamics and composition. Journal of the Atmospheric Sciences, 41, 205–219.

24 Dods, J., Chapman, S. C., & Gjerloev, J. W. (2015). Network analysis of geomagnetic substorms using the SuperMAG database of ground‐based magnetometer stations. Journal of Geophysical Research, 120, 7774– 7784. doi:10.1002/2015JA021456

25 Dods, J., Chapman, S. C., & Gjerloev, J. W. (2017). Characterizing the ionospheric current pattern response to southward and northward IMF turnings with dynamical SuperMAG correlation networks. Journal of Geophysical Research, 122, 1883– 1902. doi:10.1002/2016JA023686

26 Dungey, J. W., Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 2, 47–48.

27 Frank, L. A., & Ackerson, K. L. (1971). Observations of charged particle precipitation into the auroral zone. Journal of Geophysical Research, 76, 3612–3643. doi:10.1029/JA076i016p03612

28 Fuller‐Rowell, T., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., & Millward, G. H. (1996). A coupled thermosphere‐ionosphere model (CTim). In R. W. Schunk (Ed.), STEP report (p. 217). Boulder, CO: Scientific Communications on Solar Terrestrial Physics.

29 Fuller‐Rowell, T. J., & Evans, D. S. (1987). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research,, 92, A7, 7606–7618.

30 Fuller‐Rowell, T. J., & Rees, D. (1980). A three‐dimensional, time dependent global model of the thermosphere. Journal of the Atmospheric Sciences, 37, 2545–2567.

31 Fuller‐Rowell, T. J., Codrescu, M. V., & Wilkinson, P. (2000). Quantitative modeling of the ionospheric response to geomagnetic activity. Annals of Geophysics, 18(7), 766–781. doi:10.1007/s00585‐000‐0766‐7

32 Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., & Bailey, G. J. (1988). Simulations of the seasonal and universal time variations of the high‐latitude thermosphere and ionosphere using a coupled, three‐dimensional model. Pure and Applied Geophysics, 127, 189–217. doi:10.1007/ BF00879811

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Space Physics and Aeronomy, Ionosphere Dynamics and Applications»

Представляем Вашему вниманию похожие книги на «Space Physics and Aeronomy, Ionosphere Dynamics and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Space Physics and Aeronomy, Ionosphere Dynamics and Applications»

Обсуждение, отзывы о книге «Space Physics and Aeronomy, Ionosphere Dynamics and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x