Andrea Vacca - Hydraulic Fluid Power

Здесь есть возможность читать онлайн «Andrea Vacca - Hydraulic Fluid Power» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Hydraulic Fluid Power: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Hydraulic Fluid Power»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn more about hydraulic technology in hydraulic systems design with this comprehensive resource Hydraulic Fluid Power Written in an approachable and accessible style, the book’s concepts are classified, analyzed, presented, and compared on a system level. The book also provides readers with the basic and advanced tools required to understand how hydraulic circuit design affects the operation of the equipment in which it’s found, focusing on the energy performance and control features of each design architecture. Readers will also learn how to choose the best design solution for any application. 
Readers of 
will benefit from: 
Approaching hydraulic fluid power concepts from an “outside-in” perspective, emphasizing a problem-solving orientation Abundant numerical examples and end-of-chapter problems designed to aid the reader in learning and retaining the material A balance between academic and practical content derived from the authors’ experience in both academia and industry Strong coverage of the fundamentals of hydraulic systems, including the equations and properties of hydraulic fluids 
 is perfect for undergraduate and graduate students of mechanical, agricultural, and aerospace engineering, as well as engineers designing hydraulic components, mobile machineries, or industrial systems.

Hydraulic Fluid Power — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Hydraulic Fluid Power», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.5.2 Major Losses

For the regions of fully developed flow, it is possible to analytically demonstrate that for laminar flow conditions:

(3.28) Figure 311 Example of analysis of major and minor losses in a pipe flow The - фото 124

Figure 311 Example of analysis of major and minor losses in a pipe flow The - фото 125

Figure 3.11 Example of analysis of major and minor losses in a pipe flow.

The velocity value v represents the average velocity over the section. From considerations based on dimensional analysis, it is possible to derive the Darcy‐Weisbach equation, which has validity for both laminar and turbulent flow conditions:

(3.29) Hydraulic Fluid Power - изображение 126

where the friction factor f is a function of the Reynolds number and the relative roughness of the pipe:

(3.30) Hydraulic Fluid Power - изображение 127

Figure 3.12shows the results from the pioneering work performed by Moody [15] on the determination of the friction factor. The Moody's diagram is nowadays the most used chart for determining the major head losses in pipe flows. Analytical expressions for f can also be found in basic fluid mechanics textbooks. A widely adopted one is the Colebrook's formula:

(3.31) From Eq 328 it is possible to conclude that the loss term h majorin - фото 128

From Eq. (3.28), it is possible to conclude that the loss term h majorin laminar conditions is proportional to the average fluid velocity ( v ) because of the presence of the Reynolds number, Re , at the denominator of the expression. However, under conditions of complete turbulence, where the friction factor f is constant, the loss term follows a quadratic relation with v .

The major loss term h majoris proportional to the average fluid velocity, v , in laminar conditions, and to v 2in complete turbulent conditions.

3.5.3 Minor Losses

Minor losses are primarily caused by flow separation effects. Figure 3.13illustrates the case of the flow separation in proximity of a pipe entrance from a reservoir: the streamlines qualitatively illustrated the mixing areas of the separated zones, where energy is dissipated.

Flow separation effects such as the case in Figure 3.13occur at every geometrical discontinuity of the pipe flow system. The energy losses in these cases are described by two alternative formulas:

(3.32) Hydraulic Fluid Power - изображение 129

or

(3.33) Hydraulic Fluid Power - изображение 130

As in the case of major losses, minor losses are quantified with respect to the kinetic term v 2/2, by means of empirical relations based on experimental data. For many cases, particularly for entrances, exits, or sudden contractions or expansions, it is common to find in the literature the k coefficients. In the case of an exit to a tank, it is intuitive to consider that all the kinetic energy of the fluid inside the pipe will be dissipated; therefore, k exit= 1. For other discontinuities, typically k < 1.

For other discontinuities, such as elbow or bends, it is more common to evaluate the friction coefficient f relative to the diameter representative of the discontinuity (i.e. the diameter of the curved pipe, for the case of an elbow) and use an empirical value of equivalent length L e, which corresponds to the length of a straight pipe that would provide the same head loss.

Figure 312 Moodys diagram for the calculation of the friction factor Source - фото 131

Figure 3.12 Moody's diagram for the calculation of the friction factor.

Source: Moody's diagram, Darcy–Weisbach friction factor, wikipedia. Licensed under CC BY‐SA 4.0.

Figure 313 Example of separation region at a flow entrance A fluid power - фото 132

Figure 3.13 Example of separation region at a flow entrance.

A fluid power engineer must be ready to use both the formulas (3.32)and (3.33), depending on the data source that is available. For basic geometries, empirical data for minor losses can be found in the book of Idelchik [31].

It is important to point out that, in general, the minor losses include also the frictional effects of the developing flow region that follows the initial flow separation. This allows for a straightforward identification of the lengths to be used in the evaluation of the major loss terms. For example, with reference to the previous Figure 3.11, the entrance loss considers the additional losses associated to the entrance region in such a way that the evaluation of the major losses of the first straight section of the pipe is performed with the geometrical length L 1. Similarly, the lengths L 2and L 3will be used in Eq. (3.29)for the other major losses present between the reference sections.

In most cases, the minor loss term h minoris proportional to the term v 2.

3.6 Hydraulic Resistance

The generalized Bernoulli's law ( Eq. (3.25)) can be written differently to break down the energy losses into three different contributions:

(3.34) Equation 334highlights the pressure kinetics and elevation terms - фото 133

Equation (3.34)highlights the pressure, kinetics, and elevation terms contributing to h loss. In hydraulic systems, it is very common to have the pressure differential term dominating the other two, which can easily be ignored. For this reason, it can often be assumed that

(3.35) Hydraulic Fluid Power - изображение 134

In hydraulic systems, the head loss term h l(= h major+ h minor) relates to a pressure loss.

Equations (3.25), (3.29)(major losses), and (3.32)(minor losses) highlight how the pressure drop due to frictional losses across a hydraulic element or a section of a pipe is proportional to v 2, for turbulent conditions:

(3.36) Hydraulic Fluid Power - изображение 135

Common components of a hydraulic system such as valves and hydraulic fittings are mostly characterized by turbulent flow conditions. This is common for all sources of minor losses. Considering the relation between average velocity and volumetric flow rate ( Eq. (3.10)), Eq. (3.36)can be written as follows:

(3.37) картинка 136

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Hydraulic Fluid Power»

Представляем Вашему вниманию похожие книги на «Hydraulic Fluid Power» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


John Sandford - Field of Prey
John Sandford
libcat.ru: книга без обложки
Andrew Vachss
Andrew Vachss - Mask Market
Andrew Vachss
Andrew Vachss - Down Here
Andrew Vachss
Andrew Vachss - Safe House
Andrew Vachss
Andrew Vachss - Footsteps of the Hawk
Andrew Vachss
Andrew Vachss - Hard Candy
Andrew Vachss
Andrew Vachss - Flood
Andrew Vachss
Andrea Pirringer - Prières pour chaque jour
Andrea Pirringer
Andrea Braverman - Pulga tiene un perro
Andrea Braverman
Отзывы о книге «Hydraulic Fluid Power»

Обсуждение, отзывы о книге «Hydraulic Fluid Power» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x