Handbook of Ecological and Ecosystem Engineering

Здесь есть возможность читать онлайн «Handbook of Ecological and Ecosystem Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Ecological and Ecosystem Engineering: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Ecological and Ecosystem Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn from this integrated approach to the management and restoration of ecosystems edited by an international leader in the field  The
 delivers a comprehensive overview of the latest research and practical developments in the rapidly evolving fields of ecological and ecosystem engineering. Beginning with an introduction to the theory and practice of ecological engineering and ecosystem services, the book addresses a wide variety of issues central to the restoration and remediation of ecological environments. 
The book contains fulsome analyses of the restoration, rehabilitation, conservation, sustainability, reconstruction, remediation, and reclamation of ecosystems using ecological engineering techniques. Case studies are used to highlight practical applications of the theory discussed within. 
The material in the 
 is particularly relevant at a time when the human population is dramatically rising, and the exploitation of natural resources is putting increasing pressure on planetary ecosystems. The book demonstrates how modern scientific ecology can contribute to the greening of the environment through the inclusion of concrete examples of successful applied management. The book also includes: 
A thorough discussion of ecological engineering and ecosystem services theory and practice An exploration of ecological and ecosystem engineering economic and environmental revitalization An examination of the role of soil meso and macrofauna indicators for restoration assessment success in a rehabilitated mine site A treatment of the mitigation of urban environmental issues by applying ecological and ecosystem engineering A discussion of soil fertility restoration theory and practice Perfect for academic researchers, industry scientists, and environmental engineers working in the fields of ecological engineering, environmental science, and biotechnology, the 
also belongs on the bookshelves of environmental regulators and consultants, policy makers, and employees of non-governmental organizations working on sustainable development.

Handbook of Ecological and Ecosystem Engineering — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Ecological and Ecosystem Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

121 121 Aguilera, P., Borie, F., Seguel, A., and Cornejo, P. (2019). How does the use of non‐host plants affect arbuscular mycorrhizal communities and levels and nature of glomalin in crop rotation systems established in acid andisols? In: Mycorrhizal Fungi in South America (eds. M. Pagano and M. Lugo), Fungal Biology, 147–158. Cham, Switzerland: Springer.

122 122 Zheng, S.J. (2010). Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann. Bot. 106: 183–184.

123 123 Kuswantoro, H. and Zen, S. (2013). Performance of acid‐tolerant soybean promising lines in two planting seasons. Int. J. Biol. 5: 49–56.

124 124 Konaka, T., Ishimoto, Y., Yamada, M. et al. (2019). Tolerance evaluation of Jatropha curcas and Acacia burkei to acidic and copper/nickel‐contaminated soil. J. Environ. Biol. 40: 1109–1114.

125 125 Awa, S.H. and Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 231: 1–15.

126 126 Ye, S., Zeng, G., Wu, H. et al. (2017). Biological technologies for the remediation of co‐contaminated soil. Crit. Rev. Biotechnol. 37: 1062–1076.

127 127 Ma, J.W., Wang, F.Y., Huang, Z.H., and Wang, H. (2010). Simultaneous removal of 2,4‐dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J. Hazard. Mater. 176: 715–720.

128 128 Ye, S., Zeng, G., Wu, H. et al. (2017). Co‐occurrence and interactions of pollutants, and their impacts on soil remediation – a review. Crit. Rev. Environ. Sci. Technol. 47: 1528–1553.

129 129 Ojuederie, O.B. and Babalola, O.O. (2017). Microbial and plant‐assisted bioremediation of heavy metal polluted environments: a review. Int. J. Environ. Res. Public Health 14: 1504.

130 130 Villa, R.D., Trovó, A.G., and Nogueira, R.F.P. (2008). Environmental implications of soil remediation using the Fenton process. Chemosphere 71: 43–50.

131 131 Akhtar, F.Z., Archana, K.M., Krishnaswamy, V.G., and Rajagopal, R. (2020). Remediation of heavy metals (Cr, Zn). Using physical, chemical and biological methods: a novel approach. SN Appl. Sci. 2: 267.

132 132 Cheng, M., Zeng, G., Huang, D. et al. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs). For remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284: 582–598.

133 133 Yao, Z., Li, J., Xie, H., and Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 16: 722–729.

134 134 Sun, X., Meng, J., Huo, S. et al. (2020). Remediation of heavy metal pollution in soil by microbial immobilization with carbon microspheres. Int. J. Environ. Sci. Dev. 11: 43–47.

135 135 Yadav, K.K., Singh, J.K., Gupta, N., and Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J. Mater. Environ. Sci. 8: 740–757.

136 136 Pauwels, M., Willems, G., Roosens, N. et al. (2008). Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal‐polluted sites: implications for phytoremediation. Mol. Ecol. 17: 109–119.

137 137 Coppa, E., Astolfi, S., Beni, C. et al. (2020). Evaluating the potential use of Cu‐contaminated soils for giant reed (Arundo donax, L.). cultivation as a biomass crop. Environ. Sci. Pollut. Res. 27: 8662–8672.

138 138 Manoj, S.R., Karthik, C., Kadirvelu, K. et al. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J. Environ. Manag. 254: 109779.

139 139 Patra, D.K., Pradhan, C., and Patra, H.K. (2020). Toxic metal decontamination by phytoremediation approach: concept, challenges, opportunities and future perspectives. Environ. Technol. Innov. 18: 100672.

140 140 Gomes, H.I. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environ. Technol. Rev. 1: 59–66.

141 141 Yang, Y., Zhou, X., Tie, B. et al. (2017). Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188: 148–156.

142 142 Zhou, J., Chen, L.H., Peng, L. et al. (2020). Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 247: 125856.

143 143 Papazoglou, E.G. and Fernando, A.L. (2017). Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.). grown on heavy metal contaminated soil. Ind. Crop. Prod. 107: 463–471.

144 144 Parrish, D.J. and Fike, J.H. (2005). The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24: 423–459.

145 145 Ruiz‐Olivares, A., Carrillo‐González, R., González‐Chávez, M.C.A., and Soto‐Hernández, R.M. (2013). Potential of castor bean (Ricinus communis L.). for phytoremediation of mine tailings and oil production. J. Environ. Manag. 114: 316–323.

146 146 Bauddh, K., Singh, K., Singh, B., and Singh, R.P. (2015). Ricinus communis: a robust plant for bio‐energy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84: 640–652.

147 147 Pidlisnyuk, V., Stefanovska, T., Lewis, E.E. et al. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 33: 1–19.

148 148 Barbosa, B. and Fernando, A.L. (2018). Aided phytostabilization of mine waste. In: Bio‐Geotechnologies for Mine Site Rehabilitation (eds. M.N.V. Prasad, P.J.C. Favas and S.K. Maiti), 147–157. UK: Elsevier Inc.

149 149 Barbosa, B., Boléo, S., Sidella, S. et al. (2015). Phytoremediation of heavy metal‐contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 8: 1500–1511.

150 150 Shaheen, S., Ahmad, R., Mahmood, Q. et al. (2019). Gene expression and biochemical response of giant reed under Ni and Cu stress. Int. J. Phytoremediation 21: 1474–1485.

151 151 Iram, S., Basri, R., Ahmad, K.S., and Jaffri, S.B. (2019). Mycological assisted phytoremediation enhancement of bioenergy crops Zea mays and Helianthus annuus in heavy metal contaminated lithospheric zone. Soil Sediment Contam. 28: 411–430.

152 152 Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023.

153 153 Bui, E.N. (2013). Soil salinity: a neglected factor in plant ecology and biogeography. J. Arid Environ. 92: 14–25.

154 154 Dahlhaus, P.G., Cox, J.W., Simmons, C.T., and Smitt, C.M. (2008). Beyond hydrogeologic evidence: challenging the current assumptions about salinity processes in the Corangamite region, Australia. Hydrogeol. J. 16: 1283.

155 155 Nackley, L.L. and Kim, S.H. (2015). A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. Glob. Change Biol. Bioenergy 7: 752–762.

156 156 Sánchez, E., Scordia, D., Lino, G. et al. (2015). Salinity and water stress effects on biomass production in different Arundo donax L. clones. Bioenergy Res. 8: 1461–1479.

157 157 Romero‐Munar, A., Baraza, E., Gulías, J., and Cabot, C. (2019). Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax l.) plants grown under low phosphorus by reducing leaf NA+ concentration and improving phosphorus use efficiency. Front. Plant Sci. 10: 843.

158 158 Stavridou, E., Hastings, A., Webster, R.J., and Robson, P. (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. Glob. Change Biol. Bioenergy 9: 92–104.

159 159 Burnham, M., Eaton, W., Selfa, T. et al. (2017). The politics of imaginaries and bioenergy sub‐niches in the emerging Northeast U.S. bioenergy economy. Geoforum 82: 66–76.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Ecological and Ecosystem Engineering»

Представляем Вашему вниманию похожие книги на «Handbook of Ecological and Ecosystem Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Ecological and Ecosystem Engineering»

Обсуждение, отзывы о книге «Handbook of Ecological and Ecosystem Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x