Handbook of Ecological and Ecosystem Engineering

Здесь есть возможность читать онлайн «Handbook of Ecological and Ecosystem Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Ecological and Ecosystem Engineering: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Ecological and Ecosystem Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn from this integrated approach to the management and restoration of ecosystems edited by an international leader in the field  The
 delivers a comprehensive overview of the latest research and practical developments in the rapidly evolving fields of ecological and ecosystem engineering. Beginning with an introduction to the theory and practice of ecological engineering and ecosystem services, the book addresses a wide variety of issues central to the restoration and remediation of ecological environments. 
The book contains fulsome analyses of the restoration, rehabilitation, conservation, sustainability, reconstruction, remediation, and reclamation of ecosystems using ecological engineering techniques. Case studies are used to highlight practical applications of the theory discussed within. 
The material in the 
 is particularly relevant at a time when the human population is dramatically rising, and the exploitation of natural resources is putting increasing pressure on planetary ecosystems. The book demonstrates how modern scientific ecology can contribute to the greening of the environment through the inclusion of concrete examples of successful applied management. The book also includes: 
A thorough discussion of ecological engineering and ecosystem services theory and practice An exploration of ecological and ecosystem engineering economic and environmental revitalization An examination of the role of soil meso and macrofauna indicators for restoration assessment success in a rehabilitated mine site A treatment of the mitigation of urban environmental issues by applying ecological and ecosystem engineering A discussion of soil fertility restoration theory and practice Perfect for academic researchers, industry scientists, and environmental engineers working in the fields of ecological engineering, environmental science, and biotechnology, the 
also belongs on the bookshelves of environmental regulators and consultants, policy makers, and employees of non-governmental organizations working on sustainable development.

Handbook of Ecological and Ecosystem Engineering — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Ecological and Ecosystem Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

43 43 Bracco, S., Calicioglu, O., San Juan, M.G., and Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability 10: 1698.

44 44 Stephanie, S., An, D.S., Margot, V. et al. (2019). Phytomining to re‐establish phosphorus‐poor soil conditions for nature restoration on former agricultural land. Plant Soil 440: 233–246.

45 45 Sidella, S., Barbosa, B., Costa, J. et al. (2016). Screening of giant reed clones for phytoremediation of lead contaminated soils. In: Perennial Biomass Crops for a Resource Constrained World (eds. S. Barth, D. Murphy‐Bokern, O. Kalinina, et al.), 191–197. Switzerland: Springer International Publishing.

46 46 Barbosa, B., Costa, J., and Fernando, A.L. (2018). Production of energy crops in heavy metals contaminated land: opportunities and risks. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 83–102. Cham, Switzerland: Springer.

47 47 Porter, J.R. and Semenov, M.A. (2005). Crop responses to climatic variation. Philos. Trans. R. Soc. B 360: 2021–2035.

48 48 Hasanuzzaman, M., Nahar, K., and Fujita, M. (2013). Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Abiotic Stress – Plant Responses and Applications in Agriculture (eds. K. Vahdati and C. Leslie), 169–205. London, UK: IntechOpen Limited.

49 49 Awasthi, R., Bhandari, K., and Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3: 1–24.

50 50 Yordanova, R. and Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33: 155–170.

51 51 Allen, D.J. and Ort, D.R. (2001). Impacts of chilling temperatures on photosynthesis in warm‐climate plants. Trends Plant Sci. 6: 36–42.

52 52 Fahimirad, S., Karimzadeh, G., and Ghanati, F. (2013). Cold‐induced changes of antioxidant enzymes activity and lipid peroxidation in two canola (Brassica napus L.). Cultivars. J. Plant Physiol. Breed. 3: 1–11.

53 53 Wang, W.B., Kim, Y.H., Lee, H.S. et al. (2009). Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnol. Rep. 3: 301–307.

54 54 Posmyk, M.M., Corbineau, F., Vinel, D. et al. (2001). Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol. Plant. 111: 473–482.

55 55 Janská, A., Maršík, P., Zelenková, S., and Ovesná, J. (2010). Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol. 12: 395–405.

56 56 Chen, T.H.H. and Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13: 499–505.

57 57 Larsen, S., Jaiswal, D., Bentsen, N.S. et al. (2016). Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. Glob. Change Biol. Bioenergy 6: 1061–1070.

58 58 McCalmont, J.P., Hastings, A., McNamara, N.P. et al. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob. Change Biol. Bioenergy 9: 489–507.

59 59 Kandel, T.P., Hastings, A., Jørgensen, U., and Olesen, J.E. (2016). Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe. Ind. Crop. Prod. 86: 329–333.

60 60 El Bassam, N. (2010). Handbook of Bioenergy Crops – a Complete Reference to Species, Development and Applications. London, United Kingdom: Earthscan, Ltd.

61 61 Parenti, A., Lambertini, C., and Monti, A. (2018). Areas with natural constraints to agriculture: possibilities and limitations for the cultivation of Switchgrass (Panicum virgatum L.) and Giant Reed (Arundo donax L.) in Europe. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 39–63. Cham, Switzerland: Springer.

62 62 Jensen, A.B. and Eller, F. (2020). Hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.). Leeke cv. Pakchong 1). and Giant reed (Arundo donax L.). as candidate species in temperate European paludiculture: growth and gas exchange responses to suboptimal temperatures. Aquat. Bot. 160: 103165.

63 63 Poudel, H.P., Sanciangco, M.D., Kaeppler, S.M. et al. (2019). Quantitative trait loci for freezing tolerance in a lowland x upland switchgrass population. Front. Plant Sci. 10: 372.

64 64 Paschalidou, A., Tsatiris, M., and Kitikidou, K. (2019). Perennial vs annual energy crops‐SWOT analysis (case study: Greece). Int. Refereed J. Eng. Sci. 7: 1–24.

65 65 Barbosa, B., Costa, J., Fernando, A.L., and Papazoglou, E.G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68: 17–23.

66 66 Collins, D.B.G. and Bras, R.L. (2007). Plant rooting strategies in water‐limited ecosystems. Water Resour. Res. 43: 1–10.

67 67 Pietola, L., Horn, R., and Yli‐Halla, M. (2005). Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 82: 99–108.

68 68 Liu, B., Zhu, C., Tang, C.S. et al. (2020). Bio‐remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264: 105389.

69 69 Butt, W.A., Mir, B.A., and Jha, J.N. (2016). Strength behavior of clayey soil reinforced with human hair as a natural fibre. Geotech. Geol. Eng. 34: 411–417.

70 70 Bartzen, B.T., Hoelscher, G.L., Ribeiro, L.L.O., and Seidel, E.P. (2019). How the soil resistance to penetration affects the development of agricultural crops? J. Exp. Agric. Int. 30: 1–17.

71 71 Calusi, B., Tramacere, F., Gualtieri, S. et al. (2020). Plant root penetration and growth as a mechanical inclusion problem. Int. J. Non Linear Mech. 120: 103344.

72 72 Grammelis, P., Malliopoulou, A., Basinas, P., and Danalatos, N.G. (2008). Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int. J. Mol. Sci. 9: 1241–1258.

73 73 Lu, J., Dijkstra, F.A., Wang, P., and Cheng, W. (2019). Roots of non‐woody perennials accelerated long‐term soil organic matter decomposition through biological and physical mechanisms. Soil Biol. Biochem. 134: 42–53.

74 74 Guzman, J.G., Ussiri, D.A.N., and Lal, R. (2019). Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena 176: 289–295.

75 75 Alexopoulou, E., Zanetti, F., Papazoglou, E.G. et al. (2017). Long‐term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 107: 446–452.

76 76 Fernando, A.L., Boléo, S., Barbosa, B. et al. (2015). Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res. 8: 1523–1537.

77 77 O'Brien, S.L. and Jastrow, J.D. (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 61: 1–13.

78 78 Zhong, X., Li, J., Li, X. et al. (2017). Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 285: 323–332.

79 79 Kv, U., Km, R., and Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 8: 1256–1267.

80 80 Niu, X. and Duiker, S.W. (2006). Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For. Ecol. Manag. 223: 415–427.

81 81 Ussiri, D.A.N., Guzman, J.G., Lal, R., and Somireddy, U. (2019). Bioenergy crop production on reclaimed mine land in the North Appalachian region, USA. Biomass Bioenergy 125: 188–195.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Ecological and Ecosystem Engineering»

Представляем Вашему вниманию похожие книги на «Handbook of Ecological and Ecosystem Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Ecological and Ecosystem Engineering»

Обсуждение, отзывы о книге «Handbook of Ecological and Ecosystem Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x