Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The reflection coefficient at the j thport is obtained from equation (3.1.40):

Figure 312 At the i thport the load is terminated in port characteristic - фото 382

Figure 3.12 At the i thport, the load is terminated in port characteristic impedance.

(3.1.41) Therefore S jjis the reflection coefficient Γ j at the j thport provided - фото 383

Therefore, S jjis the reflection coefficient (Γ j) at the j thport, provided all other ports are terminated in their characteristic impedances. However, if other ports are not terminated in their characteristic impedances, then S jjis not a measure of the true reflection coefficient of the network or a device at the j thport. The true reflection coefficient at the j thport, under the unmatched load condition, is more than S jjthat is defined under the matched load condition.

Transmission Coefficient S ij

If the excitation source is connected only to the j thport and the response is seen at the i thport, while all other ports are terminated in their characteristic impedances, it leads to It shows that the excitation is zero at all ports except at the j thport - фото 384. It shows that the excitation is zero at all ports, except at the j thport. The transmitted power, i.e. the scattered power, from the j thport is available at all ports, i = 1, 2, …, k. However, at the j thport, a part of the incident power appears as the reflected power. The transmission coefficient , S ijfor the power transfer from the j thport to the i thport is defined as

(3.1.42) Normally the network has identical port impedances and equal to the system - фото 385

Normally, the network has identical port impedances and equal to the system impedance, i.e. Z 0i= Z 0j= Z 0. Equation (3.1.40)is written in compact form as

(3.1.43) The elements of the S matrix are determined using equations 3141and - фото 386

The elements of the [S] matrix are determined using equations (3.1.41)and (3.1.42).

Properties of [S] Matrix

Some important properties of the [S] matrix description of the network are summarized below, without going for the formal proof of these statements. Usually, elements of the [S] matrix are complex quantities. The detailed discussion is available in the well‐known textbooks [B.1–B.5, B.7].

Reciprocity Property

The [S] matrix of a reciprocal network is a symmetric matrix, i.e. the transpose [S] Tof the [S] matrix is equal to the [S] matrix itself:

(3.1.44) картинка 387

Unitary Property

The [S] matrix of a lossless network is a unitary one. However, if the network is not lossless, then it is not unitary. The definition of the unitary matrix provides the following relation for the given [S] matrix:

(3.1.45) Introduction To Modern Planar Transmission Lines - изображение 388

where [S] Tis the transpose of the [S] matrix, [S] *is a complex conjugate of the complex [S] matrix and [I] is the identity matrix. Thus, for a given 2‐port [S] matrix, we have

On substituting these expressions in the unitary relation 3145 the - фото 389

On substituting these expressions in the unitary relation (3.1.45), the following result is obtained:

(3.1.46) On equating each element of matrix equation 3146 the following relations - фото 390

On equating each element of matrix equation (3.1.46), the following relations are obtained:

(3.1.47) Equations 3147are generalized for the Nport network 3148 3149 - фото 391

Equations (3.1.47)are generalized for the N‐port network:

(3.1.48) 3149 Equation 3148shows that both elements have identical columns - фото 392

(3.1.49) Equation 3148shows that both elements have identical columns whereas in - фото 393

Equation (3.1.48)shows that both elements have identical columns, whereas in equation (3.1.49)column are not identical. The [S] matrix is formed by the column vector as follows:

(3.1.50) Therefore in the usual vector notation we have 3151 Hence for a - фото 394

Therefore, in the usual vector notation we have

(3.1.51) Hence for a lossless network the following statements based on equations - фото 395

Hence, for a lossless network the following statements, based on equations (3.1.48)and (3.1.49)are made:

The dot product of any column vector with its complex conjugate is unity,

The dot product of any column vector with the complex conjugate of any other column vector is zero,

The [S] matrix forms an orthogonal set of the vectors.

The following expressions are written from equation (3.1.47):

(3.1.52) Equation 3152is the power balance equations for the lossless twoport - фото 396

Equation (3.1.52)is the power balance equations for the lossless two‐port networks. The unit input power fed to the port‐1 is a sum of the reflected power ( |S 11| 2) at the port‐1 and the transmitted power |S 21| 2to the port‐2. In the case |S 11| 2+ |S 21| 2is less than unity, some power is lost in the network through the mechanism of conductor, dielectric, and radiation losses. The lost power, i.e. the power dissipation in the network, is

(3.1.53) Phase Shift Property The S parameter is a complex quantity It has both - фото 397

Phase Shift Property

The [S] parameter is a complex quantity. It has both magnitude and phase. Thus, the [S]‐parameter is always defined with respect to a reference plane . In Fig (3.13)[S]‐parameter of the N‐port network is known at the location x = 0. It is determined at the new location, x = −ℓ n. Alternatively, once the [S] parameters are known at x = −ℓ n, these are determined at x = 0, i.e. at the port of the network. The location ℓ nshows the length of the line connected to each port of an N‐port network. Normally, it is the point of measurement of the [S] parameters of the network or device. The interconnecting transmission line is lossless and has propagation constant β n. Thus, the electrical length of the connecting line is θ n= β nℓ n.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x