Supercharge, Invasion, and Mudcake Growth in Downhole Applications

Здесь есть возможность читать онлайн «Supercharge, Invasion, and Mudcake Growth in Downhole Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Supercharge, Invasion, and Mudcake Growth in Downhole Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Supercharge, Invasion, and Mudcake Growth in Downhole Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mysterious «supercharge effects,» encountered in formation testing pressure transient analysis, and reservoir invasion, mudcake growth, dynamic filtration, stuck-pipe remediation, and so on, are often discussed in contrasting petrophysical versus drilling contexts. However, these effects are physically coupled and intricately related. The authors focus on a comprehensive formulation, provide solutions for different specialized limits, and develop applications that illustrate how the central ideas can be used in seemingly unrelated disciplines. This approach contributes to a firm understanding of logging and drilling principles. Fortran source code, furnished where applicable, is listed together with recently developed software applications and conveniently summarized throughout the book. In addition, common (incorrect) methods used in the industry are re-analyzed and replaced with more accurate models, which are then used to address challenging field objectives.
Sophisticated mathematics is explained in «down to earth» terms, but empirical validations, in this case through Catscan experiments, are used to «keep predictions honest.» Similarly, early-time, low mobility, permeability prediction models used in formation testing, several invented by one of the authors, are extended to handle supercharge effects in overbalanced drilling and near-well pressure deficits encountered in underbalanced drilling. These methods are also motivated by reality. For instance, overpressures of 2,000 psi and underpressures near 500 psi are routinely reported in field work, thus imparting a special significance to the methods reported in the book.
This new volume discusses old problems and modern challenges, formulates and develops advanced models applicable to both drilling and petrophysical objectives. The presentation focuses on central unifying physical models which are carefully formulated and mathematically solved. The wealth of applications examples and supporting software discussed provides readers with a unified focus behind daily work activities, emphasizing common features and themes rather than unrelated methods and work flows. This comprehensive book is «must» reading for every petroleum engineer.

Supercharge, Invasion, and Mudcake Growth in Downhole Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Supercharge, Invasion, and Mudcake Growth in Downhole Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 2.39c. FT-00 (DOI) exact forward liquid simulator.Figure 2.40. FT-01, exact inverse liquid simulator.Figure 2.41. FT-02, exact, steady forward and inverse gas simulators.Figure 2.42a. FT-06, numerical liquid and gas forward simulator.Figure 2.42b. FT-06, general flow rate functions, forward simulator.Figure 2.42c. FT-07, a FT-06 extension supporting general time-varying flowline ...Figure 2.43. FT-PTA-DDBU, early time, low mobility, flowline volume non-negligib...Figure 2.44. Classic inverse model.Figure 2.45. Both software modules apply to drawdown-buildup applications using ...Figure 2.46. Input screen for “Model SC-DD-INVERSE-2.”Figure 2.47. Input screen for “Model SC-DD-FORWARD-3B.”Figure 2.48a. Input screen for “Model SC-DD-FORWARD-2-CREATE-TABLES-3B.”Figure 2.48b. Pressure trends for selected overbalance pressures.Figure 2.49a. Input screen for “Model SC-DDBU-INVERSE-2.”Figure 2.49b. Input screen for “Model SC-DDBU-FORWARD-4NOPOR.”Figure 2.50. Input screen for integrated forward simulator for both “drawdown on...Figure 2.51. Main interface, “multiple drawdown and buildup” inverse models (MDD...Figure 2.52. Exact steady-state inverse solver (see “center button,” main menu).Figure 2.53. Inverse method, Model 2 (same as FT-PTA-DDBU).Figure 2.54. Eleven transient inverse situations supported.Figure 2.55. Original Schlumberger double-drawdown application.Figure 2.56. Main system level simulation menus and options.Figure 2.57. Run-time simulation menus for specific run.Figure 2.58. Initial cylindrical invasion and mudcake buildup.Figure 2.59. Pumpout (red) and simultaneous invasion (blue).Figure 2.60. Early results (left) and later dynamics (right) times.Figure 2.61. Integrated software platform, a beginning.Figure 2.62. Underbalanced drilling with reservoir outflow.Figure 2.63. Overbalanced drilling with wellbore inflow.Figure 2.64. Overbalanced and underbalanced drilling applications with sealed bo...Figure 2.65a. Pressure transient response with overbalance.Figure 2.65b. Pressure transient response with overbalance.Figure 2.65c. Pressure transient response with overbalance.Figure 2.65d. Pressure trends for selected overbalance pressures.Figure 2.65e. Pressure trends for selected overbalance pressures.Figure 2.65f. Pressure transient response with overbalance.Figure 2.65g. Pressure transient response with overbalance.Figure 2.66a. Pressure transient response with overbalance.Figure 2.66b. Pressure transient response with overbalance. Inverse calculation ...Figure 2.66c. Pressure transient response with overbalance.Figure 2.66d. Pressure transient response with overbalance.Figure 2.66e. Pressure transient response with overbalance.Figure 2.67. Eleven general drawdown-buildup inverse models.Figure 2.68a. Model 1 rate function (black dots denote data points).Figure 2.68b. Model 2 rate function (black dots denote data points).Figure 2.68c. Model 3 rate function.Figure 2.68d. Model 4 rate function.Figure 2.68e. Model 5 rate function.Figure 2.68f. Model 6 rate function.Figure 2.68g. Model 7 rate function.Figure 2.68h. Model 8 rate function.Figure 2.68i. Model 9 rate function.Figure 2.68j. Model 10 rate function.Figure 2.69a. Model 11 rate function (three “black circles” show pressure data s...Figure 2.69b. FT-00 exact inputs.Figure 2.69c. Source probe pressure and pumpout schedule (all rates > 0). Flow r...Figure 2.69d. Inverse model screen.Figure 2.69e. FT-00 exact inputs.Figure 2.69f. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69g. Inverse model screen.Figure 2.69h. FT-00 exact inputs.Figure 2.69i. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69j. Inverse model screen.Figure 2.69k. FT-00 exact inputs.Figure 2.69l. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69m. Inverse model screen.Figure 2.70a. Catscan, linear test vessel with core sample (flow, top to bottom)...Figure 2.70b. Radial flow Catscan test vessel.Figure 2.70c. Catscan, invasion in radial core sample (inner invaded white zone ...Figure 2.70d. Linear flow Catscans, thin dark mudcake at center of core and inva...Figure 2.70e. Linear flow Catscans, standard optical contrast.Figure 2.70f. Linear flow Catscans, high contrast visualization.Figure 2.71. Single-probe supercharging and pumping model.Figure 2.72. Pressure and contamination profiles in r-z plane.Figure 2.73a. Pressure-concentration profiles, 0.33 sec.Figure 2.73b. Pressure-concentration profiles, 1.00 min.Figure 2.73c. Pressure-concentration profiles, 3.33 min.Figure 2.73d. Pressure-concentration profiles, 3.67 min.Figure 2.73e. Pressure-concentration profiles, 5.67 min.Figure 2.73f. Formation fluid concentration at source probe.Figure 2.73g. Source probe pressure transient history.Figure 2.73h. Observation probe pressure transient history.Figure 2.74a. Initial pumping, highly invaded upper zone.Figure 2.74b. Supercharging seen in left pressure plot.Figure 2.74c. Continued supercharging and invasion.Figure 2.75a. Initial cylindrical invasion before pumping.Figure 2.75b. Dual probe pumping initiated.Figure 2.75c. Supercharging evident at large times.Figure 2.76a. Initial pumping of cylindrical invaded region.Figure 2.76b. Continued straddle packer pumping.Figure 2.76c. Strong lateral pumping.Figure 2.76d. Lower formation strongly affected.Figure 2.77. Source and observation probe pressures.Figure 2.78. Source probe formation fluid concentration.Figure 2.79a. Field log, multirate flow and pressure.Figure 2.79b. Source and observation probe simulation.

3 Chapter 3Figure 3.1. Total pumpout of 5 cc, for all three piston scenarios.Figure 3.2a. Constant rate pumping (idealization).Figure 3.2b. FT-00 forward simulator input menu.Figure 3.2c. Pumpout schedule.Figure 3.2d. Source probe pressure.Figure 3.2e. Observation probe pressure.Figure 3.2f. Model 1, for drawdown “pressure-time” data.Figure 3.2g. Inverse pressure buildup problem (Model 2).Figure 3.2h. Inverse worksheet.Figure 3.3a. Slow ramp up/down rate pumping.Figure 3.3b. FT-00 forward simulator input menu.Figure 3.3c. Pumpout schedule.Figure 3.3d. Source probe pressure.Figure 3.3e. Observation probe pressure.Figure 3.3f. Model 6 inverse problem.Figure 3.4a. Impulsive start/stop rate pumping.Figure 3.4b. FT-00 forward simulator assumptions.Figure 3.4c. Pumpout schedule.Figure 3.4d. Source prove pressure.Figure 3.4e. Observation probe pressure.Figure 3.4f. Model 6, inverse solver.Figure 3.5a. “Fast Forward” forward supercharge simulator.Figure 3.5b. Drawdown-buildup with strong supercharge.Figure 3.5c. Drawdown – only curve with supercharge.Figure 3.5d. Drawdown-only inverse supercharge model.Figure 3.5e. Drawdown-buildup inverse supercharge model.Figure 3.6a. Creating FT-00 pressure transient data for an anisotropic simulatio...Figure 3.6b. Source and observation probe pressures versus time at different mag...Figure 3.6c. FT-01 input screen.Figure 3.6d. Drawdown inverse method.Figure 3.6e. Exact direct gas solver for dual probe steady flows.Figure 3.7. Conventional dual and triple probe testers.Figure 3.8. Multiple “receiver” formation tester (having multiple spaced observa...Figure 3.9. Transmitter-receiver, receiver-receiver operations modes (see Chapte...Figure 3.10. Main FT-00 menu, see bottom right “Run” button.Figure 3.11. Depth of investigation, DOI” analysis setup.Figure 3.12a. Flow rate schedule.Figure 3.12b. Source probe response.Figure 3.12c. Pressure response at 10 cm (3.9 in).Figure 3.12d. Pressure response at 20 cm (7.9 in).Figure 3.12e. Pressure response at 20 cm (7.9 in), continued.Figure 3.12f. Pressure response at 50 cm.Figure 3.12g. Pressure response at 90 cm (35 in).Figure 3.13. FT-00 host simulator.Figure 3.14. Batch mode information message.Figure 3.15. Loop parameter setup.Figure 3.16. FT-00 running in automated batch mode (note, ? and ??).Figure 3.17. Option to view pressure plots.Figure 3.18a. Simulation No. 1, input parameters.Figure 3.18b. Simulation No. 1, Source probe response.Figure 3.18c. Simulation No. 1, Observation probe response.Figure 3.19a. Simulation No. 2, with kh = 1 md again, kv increased.Figure 3.19b. Simulation No. 2, Source probe response.Figure 3.19c. Simulation No. 2, Observation probe response.Figure 3.20a. Simulation No. 25, last kh = 500 md, kv = 100 md.Figure 3.20b. Simulation No. 25, Source probe response.Figure 3.20c. Simulation No. 25, Observation probe response.Figure 3.21. Mudcake thickness and hole radius considerations.Figure 3.22. Exact lineal invasion solution (Chin et al., 1986).Figure 3.23a. Radial flow Catscan test vessel.Figure 3.23b. Catscan invasion in radial core sample (inner invaded white zone d...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Supercharge, Invasion, and Mudcake Growth in Downhole Applications»

Представляем Вашему вниманию похожие книги на «Supercharge, Invasion, and Mudcake Growth in Downhole Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Supercharge, Invasion, and Mudcake Growth in Downhole Applications»

Обсуждение, отзывы о книге «Supercharge, Invasion, and Mudcake Growth in Downhole Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x