Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics Using Python

Здесь есть возможность читать онлайн «Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics Using Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Univariate, Bivariate, and Multivariate Statistics Using Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Univariate, Bivariate, and Multivariate Statistics Using Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Applied Univariate, Bivariate, and Multivariate Statistics Using Python
A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python
Applied Univariate, Bivariate, and Multivariate Statistics Using Python
Applied Univariate, Bivariate, and Multivariate Statistics Using Python

Applied Univariate, Bivariate, and Multivariate Statistics Using Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Univariate, Bivariate, and Multivariate Statistics Using Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

12 Chapter 7: Simple and Multiple Linear Regression 7.1 Why Use Regression?7.2 The Least-Squares Principle7.3 Regression as a “New” Least-Squares Line7.4 The Population Least-Squares Regression Line7.5 How to Estimate Parameters in Regression7.6 How to Assess Goodness of Fit?7.7 R2 – Coefficient of Determination7.8 Adjusted R27.9 Regression in Python7.10 Multiple Linear Regression7.11 Defining the Multiple Regression Model7.12 Model Specification Error7.13 Multiple Regression in Python7.14 Model-Building Strategies: Forward, Backward, Stepwise7.15 Computer-Intensive “Algorithmic” Approaches7.16 Which Approach Should You Adopt?7.17 Concluding Remarks and Further Directions: Polynomial RegressionReview Exercises

13 Chapter 8: Logistic Regression and the Generalized Linear Model 8.1 How Are Variables Best Measured? Are There Ideal Scales on Which a Construct Should Be Targeted?8.2 The Generalized Linear Model8.3 Logistic Regression for Binary Responses: A Special Subclass of the Generalized Linear Model8.4 Logistic Regression in Python8.5 Multiple Logistic Regression8.5.1 A Model with Only Lag18.6 Further DirectionsReview Exercises

14 Chapter 9: Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis 9.1 Why Technically Most Univariate Models are Actually Multivariate9.2 Should I Be Running a Multivariate Model?9.3 The Discriminant Function9.4 Multivariate Tests of Significance: Why They Are Different from the F-Ratio9.4.1 Wilks’ Lambda9.4.2 Pillai’s Trace9.4.3 Roy’s Largest Root9.4.4 Lawley-Hotelling’s Trace9.5 Which Multivariate Test to Use?9.6 Performing MANOVA in Python9.7 Effect Size for MANOVA9.8 Linear Discriminant Function Analysis9.9 How Many Discriminant Functions Does One Require?9.10 Discriminant Analysis in Python: Binary Response9.11 Another Example of Discriminant Analysis: Polytomous Classification9.12 Bird’s Eye View of MANOVA, ANOVA, Discriminant Analysis, and Regression: A Partial Conceptual Unification9.13 Models “Subsumed” Under the Canonical Correlation FrameworkReview Exercises

15 Chapter 10: Principal Components Analysis 10.1 What Is Principal Components Analysis?10.2 Principal Components as Eigen Decomposition10.3 PCA on Correlation Matrix10.4 Why Icebergs Are Not Good Analogies for PCA10.5 PCA in Python10.6 Loadings in PCA: Making Substantive Sense Out of an Abstract Mathematical Entity10.7 Naming Components Using Loadings: A Few Issues10.8 Principal Components Analysis on USA Arrests Data10.9 Plotting the ComponentsReview Exercises

16 Chapter 11: Exploratory Factor Analysis 11.1 The Common Factor Analysis Model11.2 Factor Analysis as a Reproduction of the Covariance Matrix11.3 Observed vs. Latent Variables: Philosophical Considerations11.4 So, Why is Factor Analysis Controversial? The Philosophical Pitfalls of Factor Analysis11.5 Exploratory Factor Analysis in Python11.6 Exploratory Factor Analysis on USA Arrests DataReview Exercises

17 Chapter 12: Cluster Analysis 12.1 Cluster Analysis vs. ANOVA vs. Discriminant Analysis12.2 How Cluster Analysis Defines “Proximity”12.2.1 Euclidean Distance12.3 K-Means Clustering Algorithm12.4 To Standardize or Not?12.5 Cluster Analysis in Python12.6 Hierarchical Clustering12.7 Hierarchical Clustering in PythonReview Exercises

18 References

19 Index

20 End User License Agreement

List of Tables

1 Chapter 3Table 3.1 Percentage increases in COVID-19 in 14 days as of June 22, 2020.

2 Chapter 4Table 4.1 Matched design.Table 4.2 Randomized block design.Table 4.3 Learning as a function of trial (hypothetical data).Table 4.4 Contingency table for a 2 × 2 design.

3 Chapter 6Table 6.1 Achievement as a function of teacher.Table 6.2 Achievement as a function of teacher and textbook.Table 6.3 Achievement as a function of teacher and textbook.Table 6.4 Matched pairs design.Table 6.5 Learning as a function of trial (hypothetical data).

List of Illustrations

1 Chapter 1Figure 1.1 Sample death predictions in the United States during the COVID-19...

2 Chapter 3Figure 3.1 A Comparison of Nuclear Power in 1945 and 2020. Reproduced with...Figure 3.2 Total reported COVID-19 cases. Source: CDC (Centers for Disea...Figure 3.3 Map of COVID-19 Outbreak in the State of California as of O...Figure 3.4 Bubble plot of COVID-19 cases across the United States early...Figure 3.5 The price of oil from 2019 to 2020. The price turned negative...

3 Chapter 8Figure 8.1 Challenger shuttle disaster of 1986. Challenger in flight with...

4 Chapter 10Figure 10.1 Pumpkin with an eigenvector visible before the transformation...

5 Chapter 12Figure 12.1 COVID-19 Map of Montana Counties during the Pandemic of 2020.

Guide

1 Cover

2 Title page Applied Univariate, Bivariate, and Multivariate Statistics Using Python A Beginner’s Guide to Advanced Data Analysis Daniel J. Denis

3 Copyright

4 Dedication

5 Table of Contents

6 Preface

7 Begin Reading

8 References

9 Index

10 End User License Agreement

Pages

1 i

2 ii

3 iii

4 iv

5 v

6 vi

7 vii

8 viii

9 ix

10 x

11 xi

12 xii

13 xiii

14 xiv

15 xv

16 xvi

17 xvii

18 xviii

19 xix

20 xx

21 1

22 2

23 3

24 4

25 5

26 6

27 7

28 8

29 9

30 10

31 11

32 12

33 13

34 14

35 15

36 16

37 17

38 18

39 19

40 20

41 21

42 22

43 23

44 24

45 25

46 26

47 27

48 28

49 29

50 30

51 31

52 32

53 33

54 34

55 35

56 36

57 37

58 38

59 39

60 40

61 41

62 42

63 43

64 44

65 45

66 46

67 47

68 48

69 49

70 50

71 51

72 52

73 53

74 54

75 55

76 56

77 57

78 58

79 59

80 60

81 61

82 62

83 63

84 64

85 65

86 66

87 67

88 68

89 69

90 70

91 71

92 72

93 73

94 74

95 75

96 76

97 77

98 78

99 79

100 80

101 81

102 82

103 83

104 84

105 85

106 86

107 87

108 88

109 89

110 90

111 91

112 92

113 93

114 94

115 95

116 96

117 97

118 98

119 99

120 100

121 101

122 102

123 103

124 104

125 105

126 106

127 107

128 108

129 109

130 110

131 111

132 112

133 113

134 114

135 115

136 116

137 117

138 118

139 119

140 120

141 121

142 122

143 123

144 124

145 125

146 126

147 127

148 128

149 129

150 130

151 131

152 132

153 133

154 134

155 135

156 136

157 137

158 138

159 139

160 140

161 141

162 142

163 143

164 144

165 145

166 146

167 147

168 148

169 149

170 150

171 151

172 152

173 153

174 154

175 155

176 156

177 157

178 158

179 159

180 160

181 161

182 162

183 163

184 164

185 165

186 166

187 167

188 168

189 169

190 170

191 171

192 172

193 173

194 174

195 175

196 176

197 177

198 178

199 179

200 180

201 181

202 182

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics Using Python»

Представляем Вашему вниманию похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics Using Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics Using Python»

Обсуждение, отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics Using Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x