Machine Learning Approach for Cloud Data Analytics in IoT

Здесь есть возможность читать онлайн «Machine Learning Approach for Cloud Data Analytics in IoT» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning Approach for Cloud Data Analytics in IoT: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning Approach for Cloud Data Analytics in IoT»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

In this era of IoT, edge devices generate gigantic data during every fraction of a second. The main aim of these networks is to infer some meaningful information from the collected data. For the same, the huge data is transmitted to the cloud which is highly expensive and time-consuming. Hence, it needs to devise some efficient mechanism to handle this huge data, thus necessitating efficient data handling techniques. Sustainable computing paradigms like cloud and fog are expedient to capably handle the issues of performance, capabilities allied to storage and processing, maintenance, security, efficiency, integration, cost, energy and latency. However, it requires sophisticated analytics tools so as to address the queries in an optimized time. Hence, rigorous research is taking place in the direction of devising effective and efficient framework to garner utmost advantage.
Machine learning has gained unmatched popularity for handling massive amounts of data and has applications in a wide variety of disciplines, including social media.
Machine Learning Approach for Cloud Data Analytics in IoT

Machine Learning Approach for Cloud Data Analytics in IoT — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning Approach for Cloud Data Analytics in IoT», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 3.10 Heatmap of the world.

Thus, from the above case study, it is clear that data analytics can be quite helpful for a retail industry, and thus, it has a huge potential in retail apart from various promising fields.

3.5 Conclusion and Future Scope

This chapter has discussed the potential and capability of ML approaches for predictive data analytics in the retail industry. Various models have also been discussed briefly. Few use cases have been presented to give readers a clear idea about the spectrum of its application in the retail industry. Although it has observed widespread applications, it still bears some challenges. These challenges as discussed above must be addressed by taking the research ahead.

First and foremost, researchers must work in the direction of maintaining security and privacy of data as data is the most precious asset for any organization. Work should also be done in the direction of conceptualizing usage of big data so as to benefit retailers and customers. The research must be taken ahead in the direction of efficient customized promotions that basically sends promotional messages for a specific product to a specific customer at specific time. Implementation of customized promotion will further enhance the revenue generation. Additionally, it must also be ready to develop new operational models in response to the future need and growth of industry.

References

1. Grewal, D., Motyka, S., Levy, M., The Evolution and Future of Retailing and Retailing Education. J. Mark. Educ. , 40, 1, 85–93, 2018.

2. Mangla, M., Akhare, R., Ambarkar, S., Context-Aware Automation Based Energy Conservation Techniques for IoT Ecosystem, in: Energy Conservation for IoT Devices , pp. 129–153, Springer, Singapore, 2019.

3. Avinash, B.M. and Babu, S.H., Big Data Analytics – Its Impact on Changing Trends in Retail Industry. Int. J. Adv. Res. Comput. Eng. Technol. , 7, 4, 379–382, 2018.

4. Souza, T.T.P., Kolchyna, O., Treleaven, P.C., Aste , T., Twitter sentiment analysis applied to finance: A case study in the retail industry. arXiv preprint arXiv:1507.00784, 2015.

5. Akhare, R., Mangla, M., Deokar, S., Wadhwa, V., Proposed Framework for Fog Computing to Improve Quality-of-Service in IoT Applications, in: Fog Data Analytics for IoT Applications , pp. 123–143, Springer, Singapore, 2020.

6. Potluri, S., IOT Enabled Cloud Based Healthcare System Using Fog Computing: A Case Study. J. Crit. Rev. , 7, 6, 1068–1072, 2020.

7. Deokar, S., Mangla, M., Akhare, R., A Secure Fog Computing Architecture for Continuous Health Monitoring. In Fog Computing for Healthcare 4.0 Environments , pp. 269–290. Springer, Cham, 2021.

8. Mangla, M., & Sharma, N., Fuzzy Modelling of Clinical and Epidemiological Factors for COVID-19, 2020.

9. Chatterjee, J.M., Bioinformatics using machine learning. Global Journal of Internet Interventions and IT Fusion, 1, no. 1, 2018.

10. Bradlow, E.T., Gangwar, M., Kopalle, P., Voleti, S., The Role of Big Data and Predictive Analytics in Retailing. J. Retail. , 93, 1, 79–95, 2017, doi: 10.1016/j.jretai.2016.12.004.

11. Krishna, A., Akhilesh, V., Aich, A., Hegde, C., Sales-forecasting of Retail Stores using Machine Learning Techniques. Proc. 2018 3rd Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solut. CSITSS 2018 , pp. 160–166, 2018, doi: 10.1109/CSITSS.2018.8768765.

12. Cheriyan, S., Ibrahim, S., Mohanan, S., Treesa, S., Intelligent Sales Prediction Using Machine Learning Techniques. Proc. - 2018 Int. Conf. Comput. Electron. Commun. Eng. iCCECE 2018 , August 2018, 53–58, 2019, doi: 10.1109/iCCECOME.2018.8659115.

13. Pavlyshenko, B.M., Machine-learning models for sales time series forecasting. Data , 4, 1, 1–11, 2019, doi: 10.3390/data4010015.

14. Aktas, E. and Meng, Y., An Exploration of Big Data Practices in Retail Sector. Logistics , 1, 2, 12, 2017, doi: 10.3390/logistics1020012.

15. Ferreira, K.J., Lee, B.H.A., Simchi-Levi, D., Analytics for an online retailer: Demand forecasting and price optimization. Manuf. Serv. Oper. Manag. , 18, 1, 69–88, 2016, doi: 10.1287/msom.2015.0561.

16. Nalchigar, S. and Yu, E., Business-driven data analytics: A conceptual modeling framework. Data Knowl. Eng. , 117, 2017, 359–372, 2018, doi: 10.1016/j. datak.2018.04.006.

17. Lam, D. A Survey of Predictive Analytics in Data Mining with Big Data. Athabasca University, 2014.

18. Shankar, V., Big Data and Analytics in Retailing. NIM Mark. Intell. Rev. , 11, 1, 36–40, 2019, doi: 10.2478/nimmir-2019–0006.

19. Chatterjee, J.M., Kumar, R., Khari, M., Hung, D.T., & Le, D.N., Internet of Things based system for Smart Kitchen. Int. J. Eng. Manuf. , 8, 4, 29, 2018.

20. Chatterjee, J., IoT with Big Data Framework using Machine Learning Approach. Int. J. Mach. Lear. Networked Collab. Eng. , 2, 02, 75–85, 2018.

21. Belarbi, H., Tajmouati, A., Bennis, H., Mohammed, E.H.T., Predictive Analysis of Big Data in Retail Industry. 1st Int. Conf. Comput. Wirel. Commun. Syst. , December, 560–562, 2016.

22. Chatterjee, J.M., Kumar, R., Pattnaik, P.K., Solanki, V.K., Zaman, N., Privacy preservation in data intensive environment. Tourism & Management Studies, 14, 2, 72–79, 2018.

23. Farid, M., Latip, R., Hussin, M., Hamid, N.A.W.A., A survey on QoS requirements based on particle swarm optimization scheduling techniques for workflow scheduling in cloud computing. Symmetry, 12, 4, 551, 2020.

24. Potluri, S., An IoT based solution for health monitoring using a body-worn sensor enabled device. JARDCS , 10, 9, 646–651, 2018.

25. Potluri, S., A study on technologies in cloud-based design and manufacturing. IJMPERD , 8, 6, 187–192, 2018.

26. Chandramana, S., (PDF) Retail Analytics: Driving Success in Retail Industry with Business Analytics. Int. J. Res. Publ. , 7, 4, 159–166, 2017.

27. Fuggetta, R., Brand advocates: Turning enthusiastic customers into a powerful marketing force. John Wiley & Sons, 2012.

28. Budale, D. and Mane, D., Predictive Analytics in Retail Banking. International Journal of Engineering and Advanced Technology, 2, 5, 508–510, 2013.

1 *Corresponding author: rakhiakhare@gmail.com

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning Approach for Cloud Data Analytics in IoT»

Представляем Вашему вниманию похожие книги на «Machine Learning Approach for Cloud Data Analytics in IoT» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning Approach for Cloud Data Analytics in IoT»

Обсуждение, отзывы о книге «Machine Learning Approach for Cloud Data Analytics in IoT» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x