Rajender Boddula - Fundamentals of Solar Cell Design

Здесь есть возможность читать онлайн «Rajender Boddula - Fundamentals of Solar Cell Design» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Solar Cell Design: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Solar Cell Design»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production.
Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics.
This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Fundamentals of Solar Cell Design — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Solar Cell Design», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

91. Romain Cariou et al ., III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy , 2018. https://doi.org/10.1038/s41560-018-0125-0.

92. Kunta Yoshikawa et al ., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy , 2, 17032, 2017.

93. Hung-Ling Chen et al ., A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nature Energy , 2019. https://doi.org/10.1038/s41560-019-0434-y.

94. Sheng-Qing Zhu, Bin Bian, Yun-Feng Zhu, Jun Yang, Dan Zhang and Lang Feng, Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping. Frontiers in Chemistry , 7, 137, 2019.

95. Emily D Kosten, Jackson H Atwater, James Parsons, Albert Polman and Harry, A Atwater, Highly efficient GaAs solar cells by limiting light emission angle. Light: Science & Applications , 2, e45, 2013.

96. Suk In Park et al ., GaAs droplet quantum dots with nanometer thin capping layer for plasmonic applications. Nanotechnology , 29, 205602, 2018.

97. Enrico Avancini et al ., Effects of Rubidium Fluoride and Potassium Fluoride Postdeposition Treatments on Cu(In,Ga)Se2 Thin Films and Solar Cell Performance. Chem. Mater. , 29, 9695–9704, 2017.

98. Veronica Bermudez, and Alejandro Perez-Rodriguez, Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nature Energy , 466:3, 466–475, 2018. https://doi.org/10.1038/s41560-019-0466-3.

99. W. K. Metzger et. al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nature Energy , 2019. https://doi.org/10.1038/s41560-019-0446-7.

100. Yuan Zhao, Mathieu Boccard, Shi Liu, Jacob Becker, Xin-Hao Zhao, Calli M. Campbell, Ernesto Suarez, Maxwell B. Lassise, Zachary Holman and Yong-Hang Zhang, Monocrystalline CdTe solar cells with open-circuit voltage over 1V and effciency of 17%. Nature Energy , 1, 16067, 2016.

101. Chang Yan et al ., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy , 2018. https://doi.org/10.1038/s41560-018-0206-0.

102. Joshua Moskowitz, Rashad Sindi, and Chris D. Geddes, Plasmonic Electricity II: The Effect of Particle Size, Solvent Permittivity, Applied Voltage, and Temperature on Fluorophore-Induced Plasmonic Current. J. Phys. Chem. C , 124, 5780−5788, 2020.

103. Se-Woong Baek et al ., Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy , 4, 969–976, 2019.

104. Yiming Cao, Alexandros Stavrinadis, Tania Lasanta, David So and Gerasimos Konstantatos, The role of surface passivation for effcient and photostable PbS quantum dot solar cells. Nature Energy , 1:16035, 1–6, 2016.

105. Kevin A. Bush et al ., 23.6% efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy , 2, 17009, 2017.

106. Vivian E. Ferry, Jeremy N. Munday, and Harry A. Atwater, Design Considerations for Plasmonic Photovoltaics. Adv. Mater. , 22, 4794–4808, 2010.

107. Aliaksandr Hubarevich, Mikita Marus, Weijun Fan, Aliaksandr Smirnov, Hong Wang, Highly Efficient Ultrathin Plasmonic Insulator-Metal-Insulator-Metal Solar Cell. Plasmonics , 13, 141–145, 2018.

108. Mark V. Khenkin et al ., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy , 5, 35–49, 2020.

109. Jin-Hui Zhong et al ., Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. Nature Communications , 11:1464, 2020. | https://doi.org/10.1038/s41467-020-15232-w.

110. F. Pelayo, Garcıa de Arquer, Agustın Mihi, Dominik Kufer, and Gerasimos Konstantatos, Photoelectric Energy Conversion of Plasmon-Generated Hot Carriers in Metal Insulator Semiconductor Structures. ACS Nano, 7:4, 3581–3588, 2013.

111. Renxing Lin et al ., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy , 4, 864–873, 2019.

112. Jared S. Price et al ., High-concentration planar microtracking photovoltaic system exceeding 30% efficiency. Nature Energy , 2, 17113, 2017.

113. Michael Saliba, Wei Zhang, Victor M. Burlakov, Samuel D. Stranks, Yao Sun, James M. Ball, Michael B. Johnston, Alain Goriely, Ulrich Wiesner, Henry J. Snaith, Plasmonic‐Induced Photon Recycling in Metal Halide Perovskite Solar Cells, Advanced Functional Materials , 25(31), 5038–5046, 2015. https://doi.org/10.1002/adfm.201500669

114. Tokuhisa Kawawaki, Haibin Wang, Takaya Kubo, Koichiro Saito, Jotaro Nakazaki, Hiroshi Segawa, and Tetsu Tatsuma, Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes, ACS Nano , 9, 4, 4165–4172, 2015. https://doi.org/10.1021/acsnano.5b00321

115. Janusz E. Jacak and Witold A. Jacak, Plasmonic Enhancement of Solar Cells Efficiency: Material Dependence in Semiconductor Metallic Surface Nano-Modification, 2018.

1 * Corresponding author: indrani.banerjee@cug.ac.in

3

Tandem Solar Cell

Umesh Fegade

Bhusawal Arts Science and P. O. Nahata Commerce College, Bhusawal, Maharashtra, India

Email: umeshfegade@gmail.com

Abstract

The world is facing the several problems but the energy crisis is the major concern for scientist community and intellectual. Energy production using conventional resources produces high amount of greenhouse gases which increases the temperature of earth as a results the polar ice melts. From last few decades, the renewable energy sources are used for to reduce the use of conventional resource. The sunlight is the biggest available source of renewable and scientist is keep try to produce electricity with high efficiency. The tandem solar cell is the third generation of solar cell. The tandem solar cell has two, three, and four junction and efficiency reached upto 32.8%, 44.4%, and 46.0%, respectively. In the present paper, we review the paper of tandem solar including its subtypes organic tandem solar, inorganic tandem solar, and hybrid tandem solar cell.

Keywords:Conventional resources, greenhouse gases, renewable energy, tandem solar cell

List of Abbreviations

CO 2 Carbon dioxide
PV Photovoltaic
VOC Open-circuit voltage
FF Fill factor
OPV Organic photovoltaic
GO Graphene oxide
PEIE Polyethylenimine
ITO Indium tin oxide
PCE Power conversion efficiency
LBIC Light beam induced current
EQE External quantum efficiency
Cd Cadmium
S Sulfur
Ga Gallium
Ag Silver
P Phosphorus
Si Silicon
NIR Near infrared
ZnO Zinc oxide
In Indium
CIGS Copper indium gallium diselenide
MA Methylamonnium
CQD Colloidal quantum dot
DMD Dielectric-metal-dielectric
SnO 2 Tin(IV) oxide
PSC Perovskite solar cell
TSC Tandem solar cell
OTSC Organic tandem solar cell
ITSC Inorganic tandem solar cell
HTSC Hybrid tandem solar cell
PSEHTT:ICBA Poly[(4,40-bis(3-ethylhexyl)dithieno [3,2-b:0030-d]silole)-2,6-diyl-alt-(2,5-(3-(2-ethylhexyl) thiophen-2-yl)thiazolo[5,4-d]thiazole]: indene-C60 bisadduct
PSBTBT:PC70BM Poly[(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]:[6,6]-phenyl-C70 butyric acid methyl ester
JSC Short circuit current density
Au-doped SLGNRs Au-doped single layer graphene nanoribbons
OHJs Organic heterojunctions
CGLs Charge generation layers
HAT-CN 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile
m-MTDATA 4,4′,4″-tris(N-3-methylphenyl-N-phenylamino) triphenylamine
MPE Maximum Power efficiency
PEDOT:PSS Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
CFPTSC Colorful flexible polymer tandem solar cells
LBIC Light beam induced current
EQE External quantum efficiency
I-V Current-voltage
+H3N−C6H12−NH3+ Dicationic hexane-1,6-diammonium)
C3H7−NH3+ Monocationic n-propylammonium
CIGS Copper indium gallium diselenide
CH 3NH 3PbI 3 Methyl ammonium leads triiodide
CGS Copper gallium diselenide
FAPbX3 Formamidinium lead halide
ICO Cerium-doped indium oxide
RF Radio frequency
RT Room temperature
ST-PSC Semi-transparent perovskite solar cell
P/SHJ Perovskite/silicon-heterojunction
SJSC Single-junction solar cells
OCVP Open-circuit photo-voltage
SCPCD Short-circuit photo-current density
EL Electroluminescence
TPSC Tandem polymer solar cells
MCE Maximum current efficiency
EQE External quantum efficiency

3.1 Introduction

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Solar Cell Design»

Представляем Вашему вниманию похожие книги на «Fundamentals of Solar Cell Design» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Solar Cell Design»

Обсуждение, отзывы о книге «Fundamentals of Solar Cell Design» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x